Erwinia amylovora (fireblight).

Author(s):  
Joel Vanneste

Abstract The long distance spread of fire blight is a rare event which in most cases seems to be the result of plants or plant tissues being moved across the oceans. Short distance spread is the result of the characteristics of the pathogen, especially its ability to produce an exudate (bacteria embedded in exopolysaccharides) which is easily transported by wind, rain, insects or birds. This is very efficient; once the pathogen has moved into a new territory it almost always colonizes and becomes established. This is accompanied by economic losses in regions where apple, pear or loquat are grown commercially; it might prevent the survival of local cultivars and could disrupt international trade. To date fire blight has colonized most of North America, Western Europe and most of the countries around the Mediterranean Sea as well as New Zealand. Outbreaks of fire blight are irregular and difficult to control.

Plant Disease ◽  
2017 ◽  
Vol 101 (1) ◽  
pp. 186-191 ◽  
Author(s):  
K. A. Tancos ◽  
E. Borejsza-Wysocka ◽  
S. Kuehne ◽  
D. Breth ◽  
Kerik D. Cox

Erwinia amylovora, the causal agent of fire blight, causes considerable economic losses in young apple plantings in New York on a yearly basis. Nurseries make efforts to only use clean budwood for propagation, which is essential, but E. amylovora may be present in trees that appear to have no apparent fire blight symptoms at the time of collection. We hypothesized that the use of infected budwood, especially by commercial nursery operations, could be the cause, in part, of fire blight outbreaks that often occur in young apple plantings in New York. Our goal was to investigate the presence of E. amylovora in asymptomatic budwood from nursery source plantings as it relates to trees with fire blight symptoms. From 2012 to 2015, apple budwood was collected from two commercial budwood source plantings of ‘Gala’ and ‘Topaz’ at increasing distances from visually symptomatic trees. From these collections, internal contents of apple buds were analyzed for the presence of E. amylovora. E. amylovora was detected in asymptomatic budwood in trees more than 20 m from trees with fire blight symptoms. In some seasons, there were significant (P ≤ 0.05) differences in the incidence of E. amylovora in asymptomatic budwood collected from symptomatic trees and those up to 20 m from them. In 2014 and 2015, the mean E. amylovora CFU per gram recovered from budwood in both the Gala and Topaz plantings were significantly lower in budwood collected 20 m from symptomatic trees. Further investigation of individual bud dissections revealed that E. amylovora was within the tissue beneath the bud scales containing the meristem. Results from the study highlight the shortcomings of current budwood collection practices and the need to better understand the factors that lead to the presence of E. amylovora in bud tissues to ensure the production of pathogen-free apple trees.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0250280
Author(s):  
Rafael J. Mendes ◽  
João Pedro Luz ◽  
Conceição Santos ◽  
Fernando Tavares

Fire blight is a destructive plant disease caused by Erwinia amylovora affecting pome fruit trees, and responsible for large yield declines, long phytosanitary confinements, and high economic losses. In Portugal, the first major fire blight outbreaks occurred in 2010 and 2011, and although later considered eradicated, the emergence of other outbreaks in recent years stressed the need to characterize the E. amylovora populations associated with these outbreaks. In this regard, CRISPR genotyping, assessment of three virulence markers, and semi-quantitative virulence bioassays, were carried out to determine the genotype, and assess the virulence of thirty-six E. amylovora isolates associated with outbreaks occurring between 2010 and 2017 and affecting apple and pear orchards located in the country central-west, known as the main producing region of pome fruits in Portugal. The data gathered reveal that 35 E. amylovora isolates belong to one of the widely-distributed CRISPR genotypes (5-24-38 / D-a-α) regardless the host species, year and region. Ea 680 was the single isolate revealing a new CRISPR genotype due to a novel CR2 spacer located closer to the leader sequence and therefore thought to be recently acquired. Regarding pathogenicity, although dot-blot hybridization assays showed the presence of key virulence factors, namely hrpL (T3SS), hrpN (T3E) and amsG from the amylovoran biosynthesis operon in all E. amylovora isolates studied, pathogenicity bioassays on immature pear slices allowed to distinguish four virulence levels, with most of the isolates revealing an intermediate to severe virulence phenotype. Regardless the clonal population structure of the E. amylovora associated to the outbreaks occurring in Portugal between 2010 and 2017, the different virulence phenotypes, suggests that E. amylovora may have been introduced at different instances into the country. This is the first study regarding E. amylovora in Portugal, and it discloses a novel CRISPR genotype for this bacterium.


2021 ◽  
Vol 60 (2) ◽  
pp. 253-257
Author(s):  
Duccio MIGLIORINI ◽  
Francesco PECORI ◽  
Aida RAIO ◽  
Nicola LUCHI ◽  
Domenico RIZZO ◽  
...  

2-years-old plants of Pyrus communis showing symptoms of fire blight disease were sampled in an orchard in Tuscany (Italy) during Autumn 2020. Plants were obtained the previous spring from a commercial nursery located in a region where the disease is present since 1994. The collected material was processed in the lab in order to verify the presence of the bacterium Erwinia amylovora, the causal agent of fire blight. Pure isolates showing white mucoid colonies and levan producers on Levan medium were putatively assimilated to E. amylovora. DNA was extracted from the cultures and analysed with three molecular assays, including duplex PCR of the 29-Kb plasmid pEA29 and the ams chromosomal region, sequencing of the 16S rDNA and recA gene regions, two real-time PCR assays on symptomatic plant tissues. All tests confirmed the presence of E. amylovora. Symptomatic and surrounding plants were removed and immediately destroyed according to the regional phytosanitary protocol. This outcome poses a serious threat for fruit orchards in the area.


Animals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2850
Author(s):  
Mingli Wu ◽  
Xiaoqin Tang ◽  
Sayed Haidar Abbas Raza ◽  
Haidong Zhao ◽  
Qi Li ◽  
...  

Transportation is a crucial phase in the beef cattle industry, and the annual losses caused by beef cattle transport stress are substantial. Because of its huge economic losses, such as lower growth rate and even death, long-distance transportation stress has attracted more attention from beef production practitioners because of its huge economic losses. Compared with the long-distance transportation stress, the short-distance transportation stress was ignored for the reason of no obvious symptoms in cattle. Our previous study showed that the disorder of B cell function could be a potential health risk after short-distance transportation. However, the transcriptome details of the changes in the cattle blood after short-distance transportation and the molecular mechanisms for the regulation of the developmental process are not clearly known. In this study, a total of 10 Qinchuan cattle were used to compare the molecular characteristics of blood before and after short-distance transportation. The miRNA-seq showed that 114 differentially expressed miRNAs (DEMs) were found (40 upregulated and 74 downregulated) between two groups before and after transportation. Furthermore, more than 90% of the miRNAs with counts of more than 10 were used to construct a co-expression network by weighted correlation network analysis (WGCNA), and four independent modules were identified. According to their relationship with 30 hub genes, the turquoise module was the key module in this study. The regulator network of hub genes and miRNAs in the turquoise module was constructed by miRNAs targeting genes predicting, and the miRNAs had targeting sites within hub genes that could be identified as hub-miRNAs. Further, it showed that CD40 and ITPKB had the same targeting miRNAs (miR-339a/b), and the newly discovered hub miRNAs filled the gaps in our previous study about the relationship between hub genes in short-distance transportation stress and provided the potential utility for predicting and treatment of short-distance transportation stress in beef cattle.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Jugpreet Singh ◽  
Awais Khan

Abstract The fire blight pathogen, Erwinia amylovora (EA), causes significant economic losses in rosaceae fruit crops. Recent genome sequencing efforts have explored genetic variation, population structure, and virulence levels in EA strains. However, the genomic aspects of population bottlenecks and selection pressure from geographical isolation, host range, and management practices are yet unexplored. We conducted a comprehensive analysis of whole genome sequences of 41 strains to study genetic diversity, population structure, and the nature of selection affecting sub-population differentiation in EA. We detected 72,741 SNPs and 2,500 Indels, representing about six-fold more diversity than previous reports. Moreover, nonsynonymous substitutions were identified across the effector regions, suggesting a role in defining virulence of specific strains. EA plasmids had more diversity than the chromosome sequence. Population structure analysis identified three distinct sub-groups in EA strains, with North American strains displaying highest genetic diversity. A five kilobase genomic window scan showed differences in genomic diversity and selection pressure between these three sub-groups. This analysis also highlighted the role of purifying and balancing selection in shaping EA genome structure. Our analysis provides novel insights into the genomic diversity and selection forces accompanying EA population differentiation.


2017 ◽  
Vol 83 (12) ◽  
Author(s):  
Yannick Born ◽  
Lars Fieseler ◽  
Valentin Thöny ◽  
Nadja Leimer ◽  
Brion Duffy ◽  
...  

ABSTRACT Erwinia amylovora is the causative agent of fire blight, a devastating plant disease affecting members of the Rosaceae. Alternatives to antibiotics for control of fire blight symptoms and outbreaks are highly desirable, due to increasing drug resistance and tight regulatory restrictions. Moreover, the available diagnostic methods either lack sensitivity, lack speed, or are unable to discriminate between live and dead bacteria. Owing to their extreme biological specificity, bacteriophages are promising alternatives for both aims. In this study, the virulent broad-host-range E. amylovora virus Y2 was engineered to enhance its killing activity and for use as a luciferase reporter phage, respectively. Toward these aims, a depolymerase gene of E. amylovora virus L1 (dpoL1-C) or a bacterial luxAB fusion was introduced into the genome of Y2 by homologous recombination. The genes were placed downstream of the major capsid protein orf68, under the control of the native promoter. The modifications did not affect viability of infectivity of the recombinant viruses. Phage Y2::dpoL1-C demonstrated synergistic activity between the depolymerase degrading the exopolysaccharide capsule and phage infection, which greatly enhanced bacterial killing. It also significantly reduced the ability of E. amylovora to colonize the surface of detached flowers. The reporter phage Y2::luxAB transduced bacterial luciferase into host cells and induced synthesis of large amounts of a LuxAB luciferase fusion. After the addition of aldehyde substrate, bioluminescence could be readily monitored, and this enabled rapid and specific detection of low numbers of viable bacteria, without enrichment, both in vitro and in plant material. IMPORTANCE Fire blight, caused by Erwinia amylovora, is the major threat to global pome fruit production, with high economic losses every year. Bacteriophages represent promising alternatives to not only control the disease, but also for rapid diagnostics. To enhance biocontrol efficacy, we combined the desired properties of two phages, Y2 (broad host range) and L1 (depolymerase for capsule degradation) in a single recombinant phage. This phage showed enhanced biocontrol and could reduce E. amylovora on flowers. Phage Y2 was also genetically engineered into a luciferase reporter phage, which transduces bacterial bioluminescence into infected cells and allows detection of low numbers of viable target bacteria. The combination of speed, sensitivity, and specificity is superior to previously used diagnostic methods. In conclusion, genetic engineering could improve the properties of phage Y2 toward better killing efficacy and sensitive detection of E. amylovora cells.


Plant Disease ◽  
2008 ◽  
Vol 92 (10) ◽  
pp. 1468-1468
Author(s):  
I. Križanac ◽  
A. Vukadin ◽  
E. Ðermić ◽  
B. Cvjetković

In July of 2007, fire blight symptoms were observed on Cotoneaster dammeri cv. Skogholm in a nursery near Županja, Vukovarsko-Srijemska County, in eastern Croatia. In this region, the first outbreak of fire blight was noted on apple in 1995 (2). Symptoms on cotoneaster were necrotic shoots and petioles. Immunofluorescence assay (IFA) with polyclonal antibodies (Loewe Biochemica GmbH, Sauerlach, Germany) was performed on extracts from blighted C. dammeri cv. Skogholm shoots and were found to be positive for Erwinia amylovora. Round, mucoid, whitish colonies were isolated from extracts of plant tissues with symptoms of fire blight spread on King's medium B and incubated for 2 days at 28°C. Bacterial ooze and necrosis of the inoculation site were observed on immature pear fruits inoculated with a 106 CFU/ml suspension of the isolate. Bacteria were reisolated and the species identity was confirmed by PCR and primers targeting pEA29 DNA (1). E. amylovora was previously reported only on native Cotoneaster spp. (3). To our knowledge, this is the first report of fire blight on C. dammeri cv. Skogholm from a commercial ornamental nursery in Croatia. References: (1) S. Bereswill et al. Appl. Environ. Microbiol. 58:3522, 1992. (2) B. Cvjetković et al. Glas. zaštite bilja 1:13, 1996. (3) E. Halupecki et al. Eur. J. Plant Pathol. 114:435, 2006.


2020 ◽  
Vol 96 (12) ◽  
Author(s):  
Ricardo D Santander ◽  
José F Català-Senent ◽  
Àngela Figàs-Segura ◽  
Elena G Biosca

ABSTRACT Fire blight caused by Erwinia amylovora affects pome fruit worldwide, generating serious economic losses. Despite the abundant literature on E. amylovora infection mechanisms of aerial plant organs, root infection routes remain virtually unexplored. Assessing these infection pathways is necessary for a full understanding of the pathogen's ecology. Using the pathosystem Pyrus communis–E. amylovora and different experimental approaches including a green fluorescent protein transformant (GFP1) and epifluorescence microscopy (EFM) and laser confocal scanning microscopy (LCSM), we demonstrated the pathogen's ability to infect, colonize and invade pear roots and cause characteristic fire blight symptoms both in the aerial part and in the root system. Plant infections after soil irrigation with E. amylovora-contaminated water were favored by root damage, which agreed with EFM and LCSM observations. E. amylovora GFP1 cells formed aggregates/biofilms on root surfaces and invaded the cortex through wounds and sites of lateral root emergence. Sugars, sugar-alcohols and amino acids typically secreted by roots, favored the in vitro biofilm development by E. amylovora. Migration of E. amylovora cells to aerial tissues mainly occurred after xylem penetration. Overall, our findings revealed, for the first time, common root infection patterns between E. amylovora and well-known soil borne plant pathogens and endophytes.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Mirjam Kurz ◽  
Simon Carnal ◽  
Mery Dafny-Yelin ◽  
Orly Mairesse ◽  
Richard A. Gottsberger ◽  
...  

AbstractFire blight is the most devastating disease affecting pome fruit production globally. The pathogen is native to North America and was imported to western Europe in the 1950s, progressively spreading over the continent in the ensuing decades. Previous phylogenetic studies have revealed the extreme genetic homogeneity of the pathogen outside its center of origin, which makes epidemiological studies difficult. These are generally only possible using hypervariable regions of the genome such as those represented by CRISPRs (Clustered Regularly Interspaced Short Palindromic Repeats), which are, however, not practical to sequence due to their size and variability. Here, we present a simple PCR assay targeting the duplication of a single CRISPR spacer in Erwinia amylovora that was found to be an important marker to discriminate between two main European populations of the pathogen. We implemented the assay on a total of 582 isolates to follow the spread of fire blight across the continent over several decades and, wherever possible, within single countries. The results obtained point to the occurrence of two major separate introduction events for E. amylovora in Europe that occurred approximately 20 years apart, and confirmed the existence of two principal distribution areas located in Northeastern Europe and the Eastern Mediterranean Basin from which the pathogen moved on to colonize the Eurasian continent.


2011 ◽  
Vol 64 ◽  
pp. 290-290
Author(s):  
E.G. Hough ◽  
Y. Jia ◽  
M.B. Horner

Current tools for the control of fire blight disease of apples caused by Erwinia amylovora have limitations including the increasing pressure by markets against the use of streptomycin Coast Manuka and Coast Lema Oil products have been previously shown to provide control against some bacterial fungal and yeast diseases Experiments were carried out to determine whether either of these products provided control against Erwinia amylovora Coast Lema Oil (05 1 2 3 4 w/v) inhibited E amylovora when added to a bacterial suspension Coast Manuka Oil (04 w/v) failed to inhibit E amylovora when added to the bacterial suspension It was also demonstrated that Coast Lema Oil (05 1 2 3 4 w/v) and Coast Manuka Oil (05 1 2 3 4 w/v) inhibited E amylovora replication when added to agar Filter paper discs soaked in Coast Lema Oil (2 3 4 w/v) caused small inhibition zones around the product when placed directly onto E amylovora Coast Manuka Oil (04 w/v) was unsuccessful in causing inhibition zones around the discs when placed directly onto E amylovora These initial results indicate that Lema oil has the potential to control fire blight in pipfruit trees


Sign in / Sign up

Export Citation Format

Share Document