Effect Of High Speed Secondary Air Jets On The Overall Performance Of A Large MSW Incinerator With A Vertical Shaft

1993 ◽  
Vol 92 (4-6) ◽  
pp. 389-422 ◽  
Author(s):  
V. NASSERZADEH ◽  
J. SWITHENBANK ◽  
B. JONES
Author(s):  
Johan Dahlqvist ◽  
Jens Fridh

The aspect of hub cavity purge has been investigated in a high-pressure axial low-reaction turbine stage. The cavity purge is an important part of the secondary air system, used to isolate the hot main annulus flow from cavities below the hub level. A full-scale cold-flow experimental rig featuring a rotating stage was used in the investigation, quantifying main annulus flow field impact with respect to purge flow rate as it was injected upstream of the rotor. Five operating speeds were investigated of which three with respect to purge flow, namely a high loading case, the peak efficiency, and a high speed case. At each of these operating speeds, the amount of purge flow was varied across a very wide range of ejection rates. Observing the effect of the purge rate on measurement plane averaged parameters, a minor outlet swirl decrease is seen with increasing purge flow for each of the operating speeds while the Mach number is constant. The prominent effect due to purge is seen in the efficiency, showing a similar linear sensitivity to purge for the investigated speeds. An attempt is made to predict the efficiency loss with control volume analysis and entropy production. While spatial average values of swirl and Mach number are essentially unaffected by purge injection, important spanwise variations are observed and highlighted. The secondary flow structure is strengthened in the hub region, leading to a generally increased over-turning and lowered flow velocity. Meanwhile, the added volume flow through the rotor leads to higher outlet flow velocities visible in the tip region, and an associated decreased turning. A radial efficiency distribution is utilized, showing increased impact with increasing rotor speed.


2018 ◽  
Vol 32 ◽  
pp. 01021
Author(s):  
Ştefan-Mugur Simionescu ◽  
Nilesh Dhondoo ◽  
Corneliu Bălan

In this study, the flow characteristics of an array of two circular, laminar air jets impinging on a smooth solid wall are experimentally and numerically investigated. Direct visualizations using high speed/resolution camera are performed. The evolution of the vortical structures in the area where the jet is deflected from axial to radial direction is emphasized, as well as the interaction between the two jets. A set of CFD numerical simulations in 2D flow domains are performed by using the commercial software Fluent, in the context of Reynolds-averaged Navier-Stokes (RANS) modeling. The numerical resultsare compared and validated with the experiments. The vorticity number is computed and plotted at two different positions from the jet nozzle, and a study of its distribution gives a clue on how the jets are interacting with each other in the proximity of the solid wall.


Author(s):  
Mr.M.V. Sathish ◽  
Mrs. Sailaja

A new architecture of multiplier-andaccumulator (MAC) for high-speed arithmetic. By combining multiplication with accumulation and devising a hybrid type of carry save adder (CSA), the performance was improved. Since the accumulator that has the largest delay in MAC was merged into CSA, the overall performance was elevated. The proposing method CSA tree uses 1’s-complement-based radix-2 modified Booth’s algorithm (MBA) and has the modified array for the sign extension in order to increase the bit density of the operands. The proposed MAC showed the superior properties to the standard design in many ways and performance twice as much as the previous research in the similar clock frequency. We expect that the proposed MAC can be adapted to various fields requiring high performance such as the signal processing areas.


1994 ◽  
Vol 116 (1) ◽  
pp. 147-153 ◽  
Author(s):  
N. M. Franchek ◽  
D. W. Childs

In this study, four hybrid bearings having different geometric configurations were experimentally tested for their static and dynamic characteristics, including flowrate, load capacity, rotordynamic coefficients, and whirl frequency ratio. The four bearings included a square-recess, smooth-land, radial-orifice bearing (baseline), a circular-recess bearing, a triangular-recess bearing, and an angled-orifice bearing. Each bearing had the same orifice diameter rather than the same pressure ratio. Unique to these test results is the measurement of the added mass terms, which became significant in the present tests because of high operating Reynolds numbers. Comparisons of the results were made between bearings to determine which bearing had the best performance. Based on the parameters of interest, the angled-orifice bearing has the most favorable overall performance.


Author(s):  
A. Doukelis ◽  
K. Mathioudakis ◽  
K. Papailiou

The performance of a high speed annular compressor cascade for different clearance gap sizes, with stationary or rotating hub wall is investigated. Five hole probe measurements, conducted at the inlet and outlet of the cascade, are used to derive blade performance characteristics, in the form of loss and turning distributions. Characteristics are presented in the form of circumferentially mass averaged profiles, while distributions on the exit plane provide information useful to interpret the performance of the blading. Static pressure distributions on the surface of the blades as well as inside the tip clearance gap have also been measured. A set of four clearance gap sizes, in addition to zero clearance data for the stationary wall, gives the possibility to observe the dependence of performance characteristics on clearance size, and establish the influence of rotating the hub. Overall performance is related to features of the tip clearance flow. Increasing the clearance size is found to increase losses in the clearance region, while it affects the flow in the entire passage. Wall rotation is found to improve the performance of the cascade.


Author(s):  
Rui Chu ◽  
Nong Xiao ◽  
Xicheng Lu

Remote memory sharing systems aim at the goal of improving overall performance using distributed computing nodes with surplus memory capacity. To exploit the memory resources connected by the high-speed network, the user nodes, which are short of memory, can obtain extra space provision. The performance of remote memory sharing is constrained with the expensive network communication cost. In order to hide the latency of remote memory access and improve the performance, we proposed the push-based prefetching to enable the memory providers to push the potential useful pages to the user nodes. For each provider, it employs sequential pattern mining techniques, which adapts to the characteristics of memory page access sequences, on locating useful memory pages for prefetching. We have verified the effectiveness of the proposed method through trace-driven simulations.


Author(s):  
Peter Griebel ◽  
Michael Fischer ◽  
Christoph Hassa ◽  
Eggert Magens ◽  
Henning Nannen ◽  
...  

In this research work the potential of rich quench lean combustion for low emission aeroengines is investigated in a rectangular atmospheric sector, representing a segment of an annular combustor. For a constant design point (cruise) the mixing process and the NOx formation are studied in detail by concentration, temperature and velocity measurements using intrusive and non-intrusive measuring techniques. Measurements at the exit of the homogeneous primary zone show relatively high levels of non-thermal NO. The NOx formation in the quench zone is very low due to the quick mixing of the secondary air achieved by an adequate penetration of the secondary air jets and a high turbulence level. The NOx and CO emissions at the combustor exit are low and the pattern factor of the temperature distribution is sufficient.


2012 ◽  
Vol 568 ◽  
pp. 368-371
Author(s):  
Jun Tian ◽  
Zi Qiong Shi

In this study, multi-source multi-target evaporation-sputtering PVD technology to prepare (TiN + CrN) / CrAlN nanocomposite multilayers, accurate modulation of the composition and structure of the coating can effectively reduce the stress in the coating in order to achieve (TiN + CrN) / CrAlN nano-composite multilayer dielectric films optimized design, to reach a good overall performance. (TiN + CrN) / CrAlN superhard nanocomposite multilayer coatings on the surface of tools and molds with carbide and high-speed tool steel materials, followed by the TiN film; (TiN + CrN) film, in the TiN relative content in the layer accounted for 55-65% , CrN relative content for 35-45%; gradient (CrxAl1-x) N-film, x = 0-0.5; structure of TiN / (TiN + CrN) / CrAlN superhardnano-composite multi-layer coating.


Author(s):  
A. T. Sriram

Abstract Combustor pre-diffuser is an important element connecting the compressor and combustor. The design of pre-diffuser should be in such a way that the flow velocity to be within allowable limit to hold the flame in the combustor and also it should recover pressure with less amount of total pressure loss. The general practice is to design the compressor and combustor separately for their performance. However, integrated design of outlet guide vanes and pre-diffuser is given importance, on nowadays, to improve the overall performance. Basically, the outlet guide vane blades are modified to improve the performance. In the present work, numerical simulations studies have been carried out for a well-known high speed compressor, NASA Stage 37, to identify the influence of blade parameters. The computational domain consists of compressor rotor, stator and combustor pre-diffuser. The stator blades serve as outlet guide vanes. In literature, studies were shown that there is improvement in introducing blade sweep. Also, blade lean was shown some advantages for the case of a pre-diffuser with axial inlet and radial outlet with flow turning. However, in the present case of axial inlet and axial outlet, blade lean has not shown improvement in the performance. A diffuser showing slightly unstable condition in the conventional design, Area Ratio (AR) of 1.5 in the present case, has shown improvement with the presence of blade sweep.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Pengzhong Liu ◽  
Fang Niu ◽  
Xuewen Wang ◽  
Fei Guo ◽  
Wei Luo ◽  
...  

The swirl burner with a prechamber was used in a 14 MW pulverized-coal combustion experiment to investigate the influence of inner and secondary air ratios (ISA/OSA) on the combustion characteristic and flame shape in this work. The temperatures and species concentrations in the prechamber were measured via the flue gas analyzer and thermocouples. The flame shape beyond the prechamber outlet was captured by using a high-speed camera. The results showed that the combustion efficiency was increased and low nitrogen combustion was achieved by adopting the swirl burner with a prechamber. The high temperature corrosion and slagging phenomenon did not occur in the prechamber. The influence of ISA/OSA on temperature and species concentration profiles at different areas in the prechamber was different. The flame shape size exhibited an inflection point with increasing ISA/OSA. Considering, comprehensively, the temperature peak, near wall temperature, oxygen-free zone, CO concentration, flame length, flame diameter, and divergence angle, the case of ISA/OSA =1 : 2 had great processing on combustion efficiency and NOx emission. Thus, ISA/OSA = 1 : 2 was selected as the optimized case under experiment conditions.


Sign in / Sign up

Export Citation Format

Share Document