scholarly journals Novel phospho-switch function of delta-catenin in dendrite development

2020 ◽  
Vol 219 (11) ◽  
Author(s):  
Ryan Baumert ◽  
Hong Ji ◽  
Adriana Paulucci-Holthauzen ◽  
Aaron Wolfe ◽  
Cari Sagum ◽  
...  

In neurons, dendrites form the major sites of information receipt and integration. It is thus vital that, during development, the dendritic arbor is adequately formed to enable proper neural circuit formation and function. While several known processes shape the arbor, little is known of those that govern dendrite branching versus extension. Here, we report a new mechanism instructing dendrites to branch versus extend. In it, glutamate signaling activates mGluR5 receptors to promote Ckd5-mediated phosphorylation of the C-terminal PDZ-binding motif of delta-catenin. The phosphorylation state of this motif determines delta-catenin’s ability to bind either Pdlim5 or Magi1. Whereas the delta:Pdlim5 complex enhances dendrite branching at the expense of elongation, the delta:Magi1 complex instead promotes lengthening. Our data suggest that these complexes affect dendrite development by differentially regulating the small-GTPase RhoA and actin-associated protein Cortactin. We thus reveal a “phospho-switch” within delta-catenin, subject to a glutamate-mediated signaling pathway, that assists in balancing the branching versus extension of dendrites during neural development.

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Brandon Mark ◽  
Sen-Lin Lai ◽  
Aref Arzan Zarin ◽  
Laurina Manning ◽  
Heather Q Pollington ◽  
...  

The mechanisms specifying neuronal diversity are well-characterized, yet it remains unclear how or if these mechanisms regulate neural circuit assembly. To address this, we mapped the developmental origin of 160 interneurons from seven bilateral neural progenitors (neuroblasts), and identify them in a synapse-scale TEM reconstruction of the Drosophila larval CNS. We find that lineages concurrently build the sensory and motor neuropils by generating sensory and motor hemilineages in a Notch-dependent manner. Neurons in a hemilineage share common synaptic targeting within the neuropil, which is further refined based on neuronal temporal identity. Connectome analysis shows that hemilineage-temporal cohorts share common connectivity. Finally, we show that proximity alone cannot explain the observed connectivity structure, suggesting hemilineage/temporal identity confers an added layer of specificity. Thus, we demonstrate that the mechanisms specifying neuronal diversity also govern circuit formation and function, and that these principles are broadly applicable throughout the nervous system.


2020 ◽  
Author(s):  
Eleni Dapergola ◽  
Pamela Menegazzi ◽  
Thomas Raabe ◽  
Anna Hovhanyan

AbstractEndogenous clocks enable organisms to adapt their physiology and behavior to daily variation in environmental conditions. Metabolic processes in cyanobacteria to humans are effected by the circadian clock, and its dysregulation causes metabolic disorders. In mouse and Drosophila were shown that the circadian clock directs translation of factors involved in ribosome biogenesis and synchronizes protein synthesis. However, the role of clocks in Drosophila neurogenesis and the potential impact of clock impairment on neural circuit formation and function is less understood. Here we demonstrate that light stimuli or circadian clock causes a defect in neural stem cell growth and proliferation accompanied by reduced nucleolar size. Further, we define that light and clock independently affect the InR/TOR growth regulatory pathway due to the effect on regulators of protein biosynthesis. Altogether, these data suggest that alterations in growth regulatory pathways induced by light and clock are associated with impaired neural development.


Author(s):  
Eleni Dapergola ◽  
Pamela Menegazzi ◽  
Thomas Raabe ◽  
Anna Hovhanyan

Endogenous clocks enable organisms to adapt cellular processes, physiology, and behavior to daily variation in environmental conditions. Metabolic processes in cyanobacteria to humans are under the influence of the circadian clock, and dysregulation of the circadian clock causes metabolic disorders. In mouse and Drosophila, the circadian clock influences translation of factors involved in ribosome biogenesis and synchronizes protein synthesis. Notably, nutrition signals are mediated by the insulin receptor/target of rapamycin (InR/TOR) pathways to regulate cellular metabolism and growth. However, the role of the circadian clock in Drosophila brain development and the potential impact of clock impairment on neural circuit formation and function is less understood. Here we demonstrate that changes in light stimuli or disruption of the molecular circadian clock cause a defect in neural stem cell growth and proliferation. Moreover, we show that disturbed cell growth and proliferation are accompanied by reduced nucleolar size indicative of impaired ribosomal biogenesis. Further, we define that light and clock independently affect the InR/TOR growth regulatory pathway due to the effect on regulators of protein biosynthesis. Altogether, these data suggest that alterations in InR/TOR signaling induced by changes in light conditions or disruption of the molecular clock have an impact on growth and proliferation properties of neural stem cells in the developing Drosophila brain.


2020 ◽  
Vol 21 (18) ◽  
pp. 6587
Author(s):  
Hideki Katow ◽  
Kouki Abe ◽  
Tomoko Katow ◽  
Hiromi Yoshida ◽  
Masato Kiyomoto

The GABAergic neural circuit is involved in the motile activities of both larval and juvenile sea urchins. Therefore, its function is inherited beyond metamorphosis, despite large scale remodeling of larval organs during that period. However, the initial neural circuit formation mechanism is not well understood, including how glutamate decarboxylase-expressing blastocoelar cells (GADCs) construct the neural circuit along the circumoral ciliary band (a ciliary band-associated strand, CBAS) on the larval body surface. In this study, using whole-mount immunohistochemistry and 3D reconstructed imaging, the ontogenic process of CBAS patterning was studied by focusing on Netrin and the interaction with its receptor, Unc-5. During the early 2-arm pluteus stage, a small number of GADCs egress onto the apical surface of the larval ectoderm. Then, they line up on the circumoral side of the ciliary band, and by being inserted by a further number of GADCs, form longer multicellular strands along the Netrin stripe. Application of a synthetic peptide, CRFNMELYKLSGRKSGGVC of Hp-Netrin, that binds to the immunoglobulin domain of Unc-5 during the prism stage, causes stunted CBAS formation due to inhibition of GADC egression. This also results in reduced ciliary beating. Thus, the Netrin/Unc-5 interaction is involved in the construction and function of the CBAS.


2013 ◽  
Vol 203 (3) ◽  
pp. 395-405 ◽  
Author(s):  
Megan M. Corty ◽  
Marc R. Freeman

Glia serve many important functions in the mature nervous system. In addition, these diverse cells have emerged as essential participants in nearly all aspects of neural development. Improved techniques to study neurons in the absence of glia, and to visualize and manipulate glia in vivo, have greatly expanded our knowledge of glial biology and neuron–glia interactions during development. Exciting studies in the last decade have begun to identify the cellular and molecular mechanisms by which glia exert control over neuronal circuit formation. Recent findings illustrate the importance of glial cells in shaping the nervous system by controlling the number and connectivity of neurons.


2011 ◽  
Vol 31 (3) ◽  
pp. 159-168 ◽  
Author(s):  
Mitsunori Fukuda

The TBC (Tre-2/Bub2/Cdc16) domain was originally identified as a conserved domain among the tre-2 oncogene product and the yeast cell cycle regulators Bub2 and Cdc16, and it is now widely recognized as a conserved protein motif that consists of approx. 200 amino acids in all eukaryotes. Since the TBC domain of yeast Gyps [GAP (GTPase-activating protein) for Ypt proteins] has been shown to function as a GAP domain for small GTPase Ypt/Rab, TBC domain-containing proteins (TBC proteins) in other species are also expected to function as a certain Rab-GAP. More than 40 different TBC proteins are present in humans and mice, and recent accumulating evidence has indicated that certain mammalian TBC proteins actually function as a specific Rab-GAP. Some mammalian TBC proteins {e.g. TBC1D1 [TBC (Tre-2/Bub2/Cdc16) domain family, member 1] and TBC1D4/AS160 (Akt substrate of 160 kDa)} play an important role in homoeostasis in mammals, and defects in them are directly associated with mouse and human diseases (e.g. leanness in mice and insulin resistance in humans). The present study reviews the structure and function of mammalian TBC proteins, especially in relation to Rab small GTPases.


Author(s):  
Karolina Punovuori ◽  
Mattias Malaguti ◽  
Sally Lowell

AbstractDuring early neural development, changes in signalling inform the expression of transcription factors that in turn instruct changes in cell identity. At the same time, switches in adhesion molecule expression result in cellular rearrangements that define the morphology of the emerging neural tube. It is becoming increasingly clear that these two processes influence each other; adhesion molecules do not simply operate downstream of or in parallel with changes in cell identity but rather actively feed into cell fate decisions. Why are differentiation and adhesion so tightly linked? It is now over 60 years since Conrad Waddington noted the remarkable "Constancy of the Wild Type” (Waddington in Nature 183: 1654–1655, 1959) yet we still do not fully understand the mechanisms that make development so reproducible. Conversely, we do not understand why directed differentiation of cells in a dish is sometimes unpredictable and difficult to control. It has long been suggested that cells make decisions as 'local cooperatives' rather than as individuals (Gurdon in Nature 336: 772–774, 1988; Lander in Cell 144: 955–969, 2011). Given that the cadherin family of adhesion molecules can simultaneously influence morphogenesis and signalling, it is tempting to speculate that they may help coordinate cell fate decisions between neighbouring cells in the embryo to ensure fidelity of patterning, and that the uncoupling of these processes in a culture dish might underlie some of the problems with controlling cell fate decisions ex-vivo. Here we review the expression and function of cadherins during early neural development and discuss how and why they might modulate signalling and differentiation as neural tissues are formed.


2021 ◽  
Vol 22 (10) ◽  
pp. 5113
Author(s):  
Jae-Yeon Kim ◽  
Mercedes F. Paredes

A prolonged developmental timeline for GABA (γ-aminobutyric acid)-expressing inhibitory neurons (GABAergic interneurons) is an amplified trait in larger, gyrencephalic animals. In several species, the generation, migration, and maturation of interneurons take place over several months, in some cases persisting after birth. The late integration of GABAergic interneurons occurs in a region-specific pattern, especially during the early postnatal period. These changes can contribute to the formation of functional connectivity and plasticity, especially in the cortical regions responsible for higher cognitive tasks. In this review, we discuss GABAergic interneuron development in the late gestational and postnatal forebrain. We propose the protracted development of interneurons at each stage (neurogenesis, neuronal migration, and network integration), as a mechanism for increased complexity and cognitive flexibility in larger, gyrencephalic brains. This developmental feature of interneurons also provides an avenue for environmental influences to shape neural circuit formation.


2021 ◽  
Vol 12 (4) ◽  
Author(s):  
Peng Chen ◽  
Hongyang Jing ◽  
Mingtao Xiong ◽  
Qian Zhang ◽  
Dong Lin ◽  
...  

AbstractThe genes encoding for neuregulin1 (NRG1), a growth factor, and its receptor ErbB4 are both risk factors of major depression disorder and schizophrenia (SZ). They have been implicated in neural development and synaptic plasticity. However, exactly how NRG1 variations lead to SZ remains unclear. Indeed, NRG1 levels are increased in postmortem brain tissues of patients with brain disorders. Here, we studied the effects of high-level NRG1 on dendritic spine development and function. We showed that spine density in the prefrontal cortex and hippocampus was reduced in mice (ctoNrg1) that overexpressed NRG1 in neurons. The frequency of miniature excitatory postsynaptic currents (mEPSCs) was reduced in both brain regions of ctoNrg1 mice. High expression of NRG1 activated LIMK1 and increased cofilin phosphorylation in postsynaptic densities. Spine reduction was attenuated by inhibiting LIMK1 or blocking the NRG1–LIMK1 interaction, or by restoring NRG1 protein level. These results indicate that a normal NRG1 protein level is necessary for spine homeostasis and suggest a pathophysiological mechanism of abnormal spines in relevant brain disorders.


2019 ◽  
Vol 116 (37) ◽  
pp. 18445-18454 ◽  
Author(s):  
Alan K. Itakura ◽  
Kher Xing Chan ◽  
Nicky Atkinson ◽  
Leif Pallesen ◽  
Lianyong Wang ◽  
...  

A phase-separated, liquid-like organelle called the pyrenoid mediates CO2fixation in the chloroplasts of nearly all eukaryotic algae. While most algae have 1 pyrenoid per chloroplast, here we describe a mutant in the model algaChlamydomonasthat has on average 10 pyrenoids per chloroplast. Characterization of the mutant leads us to propose a model where multiple pyrenoids are favored by an increase in the surface area of the starch sheath that surrounds and binds to the liquid-like pyrenoid matrix. We find that the mutant’s phenotypes are due to disruption of a gene, which we call StArch Granules Abnormal 1 (SAGA1) because starch sheath granules, or plates, in mutants lacking SAGA1 are more elongated and thinner than those of wild type. SAGA1 contains a starch binding motif, suggesting that it may directly regulate starch sheath morphology. SAGA1 localizes to multiple puncta and streaks in the pyrenoid and physically interacts with the small and large subunits of the carbon-fixing enzyme Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase), a major component of the liquid-like pyrenoid matrix. Our findings suggest a biophysical mechanism by which starch sheath morphology affects pyrenoid number and CO2-concentrating mechanism function, advancing our understanding of the structure and function of this biogeochemically important organelle. More broadly, we propose that the number of phase-separated organelles can be regulated by imposing constraints on their surface area.


Sign in / Sign up

Export Citation Format

Share Document