scholarly journals COMPOSITION AND SYNTHESIS OF LIPIDS IN RESTING AND PHAGOCYTIZING LEUKOCYTES

1959 ◽  
Vol 110 (6) ◽  
pp. 969-980 ◽  
Author(s):  
Peter Elsbach

The lipid content of rabbit polymorphonuclear leukocytes, obtained from peritoneal exudates, constituted 8.7 ± 2.9 per cent of the dry weight of these cells; 60 per cent of all lipids were phospholipids, 20 per cent triglycerides, and the remainder cholesterol and cholesterol esters and a small amount of non-esterified fatty acids (2 to 4 per cent). The composition of the fatty acids in leukocytes, as determined by gas-liquid chromatography, was slightly different from rabbit serum and red blood cells, but markedly different from the dietary fat. The synthesis, turnover, and composition of lipids in rabbit leukocytes at rest and during phagocytosis in vitro were compared. Lipid content and composition were not affected by the phagocytic process. However, active phagocytosis resulted in an increase in the rate of turnover of lipids. This stimulation of lipid metabolism was more marked in triglycerides and cholesterol esters than in phospholipids. It is suggested that the increased turnover of lipid during phagocytosis may reflect a general metabolic stimulation accompanying this process, rather than a specific synthesis of phospholipid for the production of new cell membrane.

2020 ◽  
Vol 36 (6) ◽  
pp. 35-48
Author(s):  
D.V. Коchkin ◽  
G.I. Sobolkovа ◽  
А.А. Fоmеnkov ◽  
R.А. Sidorov ◽  
А.М. Nоsоv

The physiological characteristics of the callus cell cultures of Alhagi persarum Boiss et Buhse, a member of the legume family, widely used in folk medicine, have been studied. It was shown that the source of the explant was an important factor in the initiation of callusogenesis: more intense callusogenesis (almost 100%) was observed for explants from various organs of sterile seedlings, rather than intact plants (less than 30%). As a result, more than 20 lines of morphologically different callus cell cultures were obtained, and the growth parameters for the 5 most intensively growing lines were determined. The composition of fatty acids (FA) of total lipids and secondary metabolites in the most physiologically stable callus line Aр-207 was analyzed. Using capillary gas-liquid chromatography with mass spectrometric detection (GLC-MS), 19 individual C12--C24 FAs were identified, the main fraction of which were palmitic (~ 23%), stearic (~ 22%), linoleic (~ 14%) and α-linolenic (~ 33%) acids. The established atypical ratio of FAs (a simultaneous high content of both saturated FAs and polyunsaturated α-linolenic acid) is possibly due to the adaptation of cells to in vitro growth conditions. Phytochemical analysis of the secondary metabolites was carried out using ultra-performance liquid chromatography with electrospray ionization mass spectrometric detection (UPLC MS). Compounds belonging to different structural groups of isoflavones were found. Aglycones (calycosin, formononetin and afrormosin isomer), glucosides (formononetin glucoside), as well as esters of glucosides (malonylglycosides of calicosin, formononetin, afrormosin isomers, glycitein and genistein) were detected. These secondary metabolites are widespread in plants of the Fabaceae family; however, isoflavones are rare in representatives of the Alhagi genus. The presence of malonylated isoflavone glycosides in Alhagi spp. was shown for the first time. endemic plant species, Alhagi, in vitro cell culture, callus cell culture, isoflavones, fatty acids All studies were carried out using the equipment of the "Experimental Biotechnological Facility" and the "All-Russian Collection of Cell Cultures of Higher Plants" of IРР RAS. This work was supported by the Russian Foundation for Basic Research (RFBR), contract no.18-54-06021 (Az_a), and the Government of the Russian Federation, Megagrant Project no. 075-15-2019-1882.


2021 ◽  
Vol 99 (Supplement_1) ◽  
pp. 177-177
Author(s):  
Gabriela E Martinez Padilla ◽  
Rajesh Jha ◽  
Vivek Fellner ◽  
Eric van Heugten

Abstract This study evaluated short-chain fatty acid (SCFA) production from purified fiber sources when fermented in vitro using pig cecal contents as an inoculum. Fiber sources of interest were inulin from chicory root (native and long-chain inulin with 90 and 98% fiber, respectively), pectin from citrus peel (high methoxyl pectin), resistant starch (native starch), potato starch (commercial grade), and β-glucan (β-1,3;β-1,6 yeast-derived). Cellulose and cornstarch were used as indigestible and highly digestible carbohydrates, respectively. Triplicate samples of substrates (2 g) were subjected to enzymatic hydrolysis with pepsin and pancreatin for 6 h. Subsequently, hydrolyzed residues (200 mg) were incubated under anaerobic conditions at 39°C with 30 mL solution of cecal inoculum collected from 3 sows fed a standard commercial diet and buffered mineral solution. After 48 h of incubation, solutions from fermented samples were analyzed for pH, SCFA, and branched-chain fatty acids (BCFA) using gas-liquid chromatography. Enzymatic hydrolysis had no effect on digestion of β-glucan, but total SCFA concentration after fermentation was highest (26.13 mmol/g) followed by resistant starch (22.61 mmol/g) and potato starch (22.20 mmol/g) and was lowest for cellulose (13.91 mmol/g). In contrast, native inulin was highly digested during enzymatic hydrolysis, resulting in the lowest substrate available for fermentation (11.84% DM) and the highest pH (5.98). Enzymatic hydrolysis and fermentation of resistant starch increased (P< 0.001) concentrations of acetate (0.60 mg/g), whereas potato starch and β-glucan yielded more butyrate (0.60 and 0.54 mg/g respectively), and β-glucan resulted in greater (P< 0.001) propionate concentrations (0.69 mg/g). Pectin resulted in the highest fermentation (82.38% DM disappearance) and the lowest pH (4.03) compared to the other fiber sources (P< 0.001) and yielded the lowest BCFA concentration (1.89 mM, P< 0.001). Results suggest that fermentation of resistant starch, potato starch, and β-glucan produced higher SCFA concentrations, while pectin resulted in a decreased pH of fermentation solution.


1992 ◽  
Vol 4 (4) ◽  
pp. 413-420 ◽  
Author(s):  
David J. Roser ◽  
D.R. Melick ◽  
H.U. Ling ◽  
R.D. Seppelt

Ethanol extractable polyols and sugars from the dominant cryptogams of the Windmill Islands, Wilkes Land, East Antarctica, were characterized and quantified by gas liquid chromatography. Arabitol, ribitol and mannitol were the major low molecular weight carbohydrates extracted from all eight species of lichen analysed. Total extractable carbohydrate levels (20–60 mg g−1 dry weight) were comparable to those for temperate lichens. Extracts of four common bryophyte species were dominated by sucrose, glucose and fructose; little polyhydric alcohol was detected except in the liverwort Cephaloziella exiliflora which contained a substantial proportion of mannitol. Total carbohydrate levels in the bryophytes (9–60 mg g−1 dry weight) were comparable to those in lichens. The compositions of eight species of algae varied considerably. Prasiola crispa, Desmococcus vulgaris and Schizogonium murale possessed sorbitol as their main constituent and had extractable carbohydrate contents comparable to those found in bryophytes on a dry weight or chlorophyll a content basis. The one snow alga with comparable carbohydrate levels, Mesotaenium berggrenii, contained sucrose, glucose, glycerol and a number of unidentified compounds. The remaining four species (Oscillatoria sp., Chloromonas sp.1 and Chlorosarcina sp. 2 and Chlamydomonas pseudopulsatilla) did not accumulate comparable levels of sugars and polyols. Though the levels of these compounds were much lower in the Windmill Islands lichens than in maritime Antarctic species, their content with respect to water content (0.7–7 molal) was well above that at which cold acclimated plants accumulate these compounds (c. 100–500 millimolal), and which provide cryoprotection in vitro. In the case of the bryophytes and algae, however, the in vivo content was generally < 100 millimolal.


2000 ◽  
Vol 28 (6) ◽  
pp. 790-791 ◽  
Author(s):  
K. Skorupińska-Tudek ◽  
V. S. Hung ◽  
O. Olszowska ◽  
M. Furmanowa ◽  
T. Chojnacki ◽  
...  

Long-chain polyisoprenoid alcohols built from several up to more than 100 isoprenoid units are common constituents of all living organisms. They were found mostly in plants, bacteria, yeasts and mammalian cells. In vitro hairy root culture of Coluria geoides was obtained from plants transformed with Agrobacterium rhizogenes. Growth was optimal at 0.75% (w/v) glucose and at 22 °C. Dry samples of roots were extracted and lipid content was analysed by HPLC. According to our estimation, polyprenols are accumulated in roots of C. geoides cultivated in vitro as a mixture of several prenologues with the dominating prenol composed of 16 isoprenoid units. The content of polyprenols in tissue was approx. 300 μg/g of dry weight.


1980 ◽  
Vol 30 (3) ◽  
pp. 862-873
Author(s):  
P Kiley ◽  
S C Holt

The lipopolysaccharide (LPS) from Actinobacillus actinomycetemcomitans strains Y4 and N27 was isolated by the phenol-water procedure. Morphologically, the molecule consisted of ribbon and branched filaments which comprised 3% of the cellular dry weight. Chemical analysis of the isolated and purified LPSs of both strains showed them to consist of carbohydrate, lipid, 2-keto-3-deoxyoctonate, heptose, hexosamine, and phosphate. The major fatty acids of the lipid A moiety were saturated C14 and beta-OH C14 compounds. Rhamnose, fucose, galactose, glucose, heptose, glucosamine, and galactosamine comprised the monosaccharide portion of the LPS. Biological activity studies revealed both LPS molecules to be active in the Schwartzman reaction and in in vitro 45Ca bone resorption, as well as in macrophage activation and lethality and in platelet aggregation.


Blood ◽  
1971 ◽  
Vol 38 (1) ◽  
pp. 27-38 ◽  
Author(s):  
MINORU OKUMA ◽  
MANFRED STEINER ◽  
MARIO BALDINI

Abstract Lipid content and capacity to incorporate in vitro palmitate-1-14C and linoleate-1-14C into lipids was investigated in fresh and stored (4°C) human platelets. Cholesterol and phospholipids decreased 30% during storage for 6 days. Molar ratio of cholesterol to phospholipids and percentage distribution of individual phospholipids were similar in fresh and stored platelets. Palmitate bound to albumin was rapidly transferred by an energy-independent mechanism into a free fatty acid fraction of platelets. From there it was incorporated into glycerides and phospholipids, a process requiring energy. More palmitate than linoleate was incorporated into fatty acids and glycerides of fresh and stored platelets but linoleate exceeded palmitate in its incorporation into phosphatidylethanolamine. Storage of platelets produced the following changes: (1) Incorporation of palmitate into total lipids was significantly reduced but not that of linoleate. (2) Both palmitate and linoleate showed increased incorporation into phosphatidylethanolamine. (3) Incorporation of linoleate into free fatty acids and triglycerides and of palmitate into phosphatidylcholine was reduced.


1968 ◽  
Vol 21 (3) ◽  
pp. 529 ◽  
Author(s):  
GS Kennady

Sheep fed diets containing 3�5 and 7� 0% trans�aconitate on a dry weight basis for 5 days appeared normal and maintained normal levels of blood citrate, ketones, and aconitate, but showed large increases in urinary citrate. Calcium and magnesium levels in plasma and urine were not substantially modified. When trans-aconitate was placed in the rumen it disappeared rapidly but did not increase the concentration of rumen volatile fatty acids; blood and urinary aconitate values remained low. trans-Aconitate did not inhibit the fermentation of soluble substrates by rumen microorganisms in vitro. Both cis- and trans-aconitate were fermented slowly.


1990 ◽  
Vol 68 (7) ◽  
pp. 903-907 ◽  
Author(s):  
Stephen C. Cunnane ◽  
Bassam A. Nassar

The rat mesenteric vascular bed releases prostaglandins when perfused in vitro. The present study evaluated the effect of perfusion of the rat mesenteric vascular bed in vitro with a buffer containing 0, 3, 6, or 9 nM of added zinc on the release of essential fatty acids over a 150-min period. Long chain fatty acids in the mesenteric lipids and in total lipid of the perfusion effluent were assayed by gas liquid chromatography. The presence of 6 nM zinc in the perfusing buffer almost completely prevented the change in 16–22 carbon long chain fatty acids in the mesenteric phospholipids and decreased the release of free fatty acids in comparison to that occurring in the absence of additional zinc. The results sugest that physiological amounts of zinc in the perfusion medium reduce the release of essential fatty acids from rat mesenteric lipids.Key words: zinc, phospholipid, linoleic acid, arachidonic acid, prostaglandin.


1976 ◽  
Vol 54 (2) ◽  
pp. 137-144 ◽  
Author(s):  
W. C. Breckenridge ◽  
S. K. F. Yeung ◽  
A. Kuksis ◽  
J. J. Myher ◽  
M. Chan

The biosynthesis of diacylglycerols was studied in rat intestinal mucosa during in vivo absorption of a low molecular weight fraction of butter oil and of the corresponding medium and long chain fatty acids. The experimental fat solutions were given by stomach tube to the animals after a 24-h fast and mucosal scrapings were collected 3 h later. The lipids were isolated and the acylglycerols determined by combined thin-layer chromatography gas–liquid chromatography techniques and stereospecific analyses. Free fatty acid feeding led mainly to, sn-1,2-diacylglycerols, which contained exogenous and endogenous fatty acids. During triacylglycerol feeding, both.sn-1,2- and sn-2,3-diacylglycerols were recovered in significant amounts from the intestinal mucosa. The composition of the sn-2,3-diacylglycerols corresponded to that with exogenous fatty acids but the sn-1,2-diacylglycerols clearly contained both exogenous and endogenous fatty acids. In all cases it was possible to isolate endogenous sn-1,2-diacylglycerols made up largely of species with linoleic and arachidonic acids in the 2 position and palmitic and stearic acids in the 1 position, which apparently were not converted to triacylglycerols. The in vivo reacylation of 2-monoacylglycerols via both sn-1,2- and sn-2,3-diacylglycerols is in agreement with similar findings in vitro with everted sacs of rat intestinal mucosa.


2017 ◽  
Vol 42 (3) ◽  
Author(s):  
Zeliha Demirel ◽  
Esra Imamoglu ◽  
Meltem Conk Dalay

AbstractIntroduction:The main target of this study was to compare the effects of nitrogen limitation and light intensities on cell growth, lipid content and fatty acid profile ofMethods:F/2 medium and N-free F/2 medium were both tested at two different light intensities of 11 and 56 μEmResults:The presence of nitrogen led to more cells grown efficiently. Furthermore, the increase in chlorophyll content went parallel to the increase in dry weight. The most abundant saturated and monounsaturated fatty acids were pentadecanoic acid (C15:0) and palmitoleic acid (C16:1) which constituted 17%–42% and 15%–48% of total fatty acids for all growth conditions, respectively. It was recorded that palmitoleic acid was present at higher concentrations than palmitic acid.Discussion and conclusion:The noteworthy finding was that the lipid content increased with increasing the growth rate of


Sign in / Sign up

Export Citation Format

Share Document