scholarly journals The effect of heat treatment on structure property of (Bentonite - Alumina - Silica) Ceramic

2021 ◽  
Vol 1879 (3) ◽  
pp. 032119
Author(s):  
Athraa Najm Abdullah ◽  
Shatha Hashem Mahdi
2018 ◽  
Vol 185 ◽  
pp. 04029
Author(s):  
Alexey Lileev ◽  
Victoria Pinkas ◽  
Kristina Voronchihina ◽  
Anton Gunbin

This article is aimed at observation all discussion and results that have ever been found about the phenomenon of reversibility of coercivity under heat treatments in permanent magnets including the latest researches. Despite the fundamental differences in the nature of coercivity as sensitive to structure property and magnetization reversal processes all works illustrate no changes in structure under heat treatment that causes doubts about this phenomenon.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 887
Author(s):  
Chan Hyeok Lee ◽  
P. L. Narayana ◽  
Seong-Woo Choi ◽  
N. S. Reddy ◽  
Jae H. Kim ◽  
...  

Ti–6Al–4V alloy is a typical 3D printing metal, and its application has been expanded to various fields owing to its excellent characteristics such as high specific strength, high corrosion resistance, and biocompatibility. In particular, direct energy deposition (DED) has been actively explored in the fields of deposition and the repair of large titanium parts. However, owing to the complicated thermal history of the DED process, the microstructures of the fusion zone (FZ), heat-affected zone (HAZ), and base metal (BM) are different, which results in variations of their mechanical characteristics. Therefore, the process reliability needs to be optimized. In this study, the microstructure and hardness of each region were investigated with respect to various DED process parameters. An artificial neural network (ANN) model was used to correlate the measured characteristics of the FZ, HAZ, and BM of Ti–6Al–4V components with the process parameters. The variation in the mechanical characteristics between the FZ, HAZ, and BM was minimized through post-heat treatment. Heat treatment carried out at 950 °C for 1 h revealed that the microstructure and hardness values throughout the component were homogeneous.


1988 ◽  
Vol 134 ◽  
Author(s):  
Steven R. Allen ◽  
Richard J. Farris

ABSTRACTPoly-(p-phenylene benzobisthiazole) fibers provide a model system for the evaluation of structure-property relationships in extended-chain polymeric fibers. Owing to the poorly developed lateral order in as-spun fibers, the enhancement of structural perfection and of mechanical properties may be examined through heat treatment processing more readily than with more crystalline fibers. High tensile modulus (to 300 GPa) and high tensile strength (3 GPa) have been obtained from heat treatment processing of the fibers. The development of tensile modulus and tensile strength depends directly on the enhancement of overall axial molecular orientation. Tensile strength is additionally dominated by the development of stronger lateral molecular interaction. The mechanical properties mimic the inherent chain anisotropy arising from strong primary bonding along the chain and much weaker secondary interactions between chains. Tensile to shear moduli ratios of 200:1, tensile to shear strength ratios of 50:1 and tensile to compressive strength ratios of 10:1 are observed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
P. Van Cauwenbergh ◽  
V. Samaee ◽  
L. Thijs ◽  
J. Nejezchlebová ◽  
P. Sedlák ◽  
...  

AbstractTailoring heat treatments for Laser Powder Bed Fusion (LPBF) processed materials is critical to ensure superior and repeatable material properties for high-end applications. This tailoring requires in-depth understanding of the LPBF-processed material. Therefore, the current study aims at unravelling the threefold interrelationship between the process (LPBF and heat treatment), the microstructure at different scales (macro-, meso-, micro-, and nano-scale), and the macroscopic material properties of AlSi10Mg. A similar solidification trajectory applies at different length scales when comparing the solidification of AlSi10Mg, ranging from mould-casting to rapid solidification (LPBF). The similarity in solidification trajectories triggers the reason why the Brody-Flemings cellular microsegregation solidification model could predict the cellular morphology of the LPBF as-printed microstructure. Where rapid solidification occurs at a much finer scale, the LPBF microstructure exhibits a significant grain refinement and a high degree of silicon (Si) supersaturation. This study has identified the grain refinement and Si supersaturation as critical assets of the as-printed microstructure, playing a vital role in achieving superior mechanical and thermal properties during heat treatment. Next, an electrical conductivity model could accurately predict the Si solute concentration in LPBF-processed and heat-treated AlSi10Mg and allows understanding the microstructural evolution during heat treatment. The LPBF-processed and heat-treated AlSi10Mg conditions (as-built (AB), direct-aged (DA), stress-relieved (SR), preheated (PH)) show an interesting range of superior mechanical properties (tensile strength: 300–450 MPa, elongation: 4–13%) compared to the mould-cast T6 reference condition.


Author(s):  
R. M. Anderson

Aluminum-copper-silicon thin films have been considered as an interconnection metallurgy for integrated circuit applications. Various schemes have been proposed to incorporate small percent-ages of silicon into films that typically contain two to five percent copper. We undertook a study of the total effect of silicon on the aluminum copper film as revealed by transmission electron microscopy, scanning electron microscopy, x-ray diffraction and ion microprobe techniques as a function of the various deposition methods.X-ray investigations noted a change in solid solution concentration as a function of Si content before and after heat-treatment. The amount of solid solution in the Al increased with heat-treatment for films with ≥2% silicon and decreased for films <2% silicon.


Author(s):  
E. Bischoff ◽  
O. Sbaizero

Fiber or whisker reinforced ceramics show improved toughness and strength. Bridging by intact fibers in the crack wake and fiber pull-out after failure contribute to the additional toughness. These processes are strongly influenced by the sliding and debonding resistance of the interfacial region. The present study examines the interface in a laminated 0/90 composite consisting of SiC (Nicalon) fibers in a lithium-aluminum-silicate (LAS) glass-ceramic matrix. The material shows systematic changes in sliding resistance upon heat treatment.As-processed samples were annealed in air at 800 °C for 2, 4, 8, 16 and 100 h, and for comparison, in helium at 800 °C for 4 h. TEM specimen preparation of as processed and annealed material was performed with special care by cutting along directions having the fibers normal and parallel to the section plane, ultrasonic drilling, dimpling to 100 pm and final ionthinning. The specimen were lightly coated with Carbon and examined in an analytical TEM operated at 200 kV.


Author(s):  
A.H. Advani ◽  
L.E. Murr ◽  
D. Matlock

Thermomechanically induced strain is a key variable producing accelerated carbide precipitation, sensitization and stress corrosion cracking in austenitic stainless steels (SS). Recent work has indicated that higher levels of strain (above 20%) also produce transgranular (TG) carbide precipitation and corrosion simultaneous with the grain boundary phenomenon in 316 SS. Transgranular precipitates were noted to form primarily on deformation twin-fault planes and their intersections in 316 SS.Briant has indicated that TG precipitation in 316 SS is significantly different from 304 SS due to the formation of strain-induced martensite on 304 SS, though an understanding of the role of martensite on the process has not been developed. This study is concerned with evaluating the effects of strain and strain-induced martensite on TG carbide precipitation in 304 SS. The study was performed on samples of a 0.051%C-304 SS deformed to 33% followed by heat treatment at 670°C for 1 h.


Author(s):  
R. Padmanabhan ◽  
W. E. Wood

Intermediate high temperature tempering prior to subsequent reaustenitization has been shown to double the plane strain fracture toughness as compared to conventionally heat treated UHSLA steels, at similar yield strength levels. The precipitation (during tempering) of metal carbides and their subsequent partial redissolution and refinement (during reaustenitization), in addition to the reduction in the prior austenite grain size during the cycling operation have all been suggested to contribute to the observed improvement in the mechanical properties. In this investigation, 300M steel was initially austenitized at 1143°K and then subjected to intermediate tempering at 923°K for 1 hr. before reaustenitizing at 1123°K for a short time and final tempering at 583°K. The changes in the microstructure responsible for the improvement in the properties have been studied and compared with conventionally heat treated steel. Fig. 1 shows interlath films of retained austenite produced during conventionally heat treatment.


Author(s):  
Linda C. Sawyer

Recent liquid crystalline polymer (LCP) research has sought to define structure-property relationships of these complex new materials. The two major types of LCPs, thermotropic and lyotropic LCPs, both exhibit effects of process history on the microstructure frozen into the solid state. The high mechanical anisotropy of the molecules favors formation of complex structures. Microscopy has been used to develop an understanding of these microstructures and to describe them in a fundamental structural model. Preparation methods used include microtomy, etching, fracture and sonication for study by optical and electron microscopy techniques, which have been described for polymers. The model accounts for the macrostructures and microstructures observed in highly oriented fibers and films.Rod-like liquid crystalline polymers produce oriented materials because they have extended chain structures in the solid state. These polymers have found application as high modulus fibers and films with unique properties due to the formation of ordered solutions (lyotropic) or melts (thermotropic) which transform easily into highly oriented, extended chain structures in the solid state.


Sign in / Sign up

Export Citation Format

Share Document