scholarly journals Study of Fluid Flow Movement by Using Self Potential Data

2021 ◽  
Vol 873 (1) ◽  
pp. 012082
Author(s):  
Neng E. Jubaedah ◽  
Wahyudi W. Parnadi

Abstract The Self-Potential (SP) method is passive method in geophysics which works based on the natural presence of an electric field on the surface due to anomalies below the surface. SP value on surface can be generated by fluid flow through rock pores or fractures. We study fluid flow movement in subsurface using the velocity value of fluid flow derived from SP values measured on surface. For that purpose, we carried out mathematical modelling, connecting the Helmholtz-Smoluchovsky’s electrokinetic potential gradient equation with Darcy’s law. The velocity of fluid flow depends on the intrinsic permeability of rocks, electrokinetic potential gradient and electrohydrolic conductivity constant. We tested derived velocity of fluid flow on the SP data from a pilot project test site. Study results show that fluid flow in vertical direction can be identified from SP data at locations where there are significant changes of positive and negative SP values. Fluid flows from a high SP value to a low SP value and this flow is opposite the positive SP gradient. The SP value at study site lie in the range -80mV to -160mV, whereas the value of the water flow velocity lie in the range 0.08 cm/s - 0.21 cm/s.

1997 ◽  
Vol 08 (04) ◽  
pp. 793-803 ◽  
Author(s):  
Yu Chen ◽  
Hirotada Ohashi

The lattice-Bhatnagar-Gross-Krook (BGK) method has been used to simulate fluid flow in the nearly incompressible limit. But for the completely incompressible flows, two special approaches should be applied to the general model, for the steady and unsteady cases, respectively. Introduced by Zou et al.,1 the method for steady incompressible flows will be described briefly in this paper. For the unsteady case, we will show, using a simple numerical example, the need to solve a Poisson equation for pressure.


1956 ◽  
Vol 23 (2) ◽  
pp. 269-272
Author(s):  
L. F. Welanetz

Abstract An analysis is made of the suction holding power of a device in which a fluid flows radially outward from a central hole between two parallel circular plates. The holding power and the fluid flow rate are determined as functions of the plate separation. The effect of changing the proportions of the device is investigated. Experiments were made to check the analysis.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Yan Wang ◽  
Quanlin Dong ◽  
Pengfei Wang

In order to understand the mechanism of fluid flows in curved pipes, a large number of theoretical and experimental researches have been performed. As a critical parameter of curved pipe, the curvature ratioδhas received much attention, but most of the values ofδare very small (δ<0.1) or relatively small (δ≤0.5). As a preliminary study and simulation this research studied the fluid flow in a 90-degree curved pipe of large curvature ratio. The Detached Eddy Simulation (DES) turbulence model was employed to investigate the fluid flows at the Reynolds number range from 5000 to 20000. After validation of the numerical strategy, the pressure and velocity distribution, pressure drop, fluid flow, and secondary flow along the curved pipe were illustrated. The results show that the fluid flow in a curved pipe with large curvature ratio seems to be unlike that in a curved pipe with small curvature ratio. Large curvature ratio makes the internal flow more complicated; thus, the flow patterns, the separation region, and the oscillatory flow are different.


1986 ◽  
Vol 108 (2) ◽  
pp. 107-115 ◽  
Author(s):  
I. D. Palmer ◽  
C. T. Luiskutty

There is a pressing need to compare and evaluate hydraulic fracture models which are now being used by industry to predict variable fracture height. The fractures of concern here are vertical fractures which have a pronounced elongation in the direction of the payzone, i.e., there is a dominant one-dimensional fluid flow along the payzone direction. A summary is given of the modeling entailed in the basic ORU fracture model, which calculates fracture height as a function of distance from the wellbore in the case of a continuous sand bounded by zones of higher (but equal) minimum in-situ stress. The elastic parameters are assumed the same in each layer, and injected flow rates and fluid parameters are taken to be constant. Leak-off is included with spurt loss, as well as non-Newtonian flow. An advantage of the model is its small computer run time. Predictions for wellbore height and pressure from the ORU model are compared separately with the AMOCO and MIT pseudo-3D models. In one instance of high stress contrast the ORU wellbore pressure agrees fairly well with the AMOCO model, but the AMOCO wellbore height is greater by 32 percent. Comparison between the ORU and MIT models in two cases (also high stress contrast) indicates height disagreement at the wellbore by factors of 1.5–2.5 with the MIT model giving a lower height. Thus it appears there can be substantial discrepancies between all three models. Next we compare the ORU model results with six cases of elongated fractures from the TERRA-TEK fully-3D model. Although two of these cases are precluded due to anomolous discrepancies, the other four cases show reasonable agreement. We make a critical examination of assumptions that differ in all the models (e.g., the effective modulus-stiffness multiplier approximation in the AMOCO model, the effect of finite fluid flow in the vertical direction in the MIT model, and the effect of 2D flow and limited perforated height in the TERRA-TEK model). Suggestions are made for reconciling some of the discrepancies between the various models. For example, the ORU/AMOCO height discrepancy appears to be resolved; for other discrepancies we have no explanation. Our main conclusion is that the AMOCO, TERRA-TEK and ORU models for fracture height and bottomhole pressure are in reasonable agreement for highly elongated fractures. Despite the difficulties in understanding the different models, the comparisons herein are an encouraging first step towards normalizing these hydraulic fracture models.


Geophysics ◽  
2005 ◽  
Vol 70 (5) ◽  
pp. G109-G118 ◽  
Author(s):  
Graham Heinson ◽  
Antony White ◽  
David Robinson ◽  
Nader Fathianpour

The self-potential (SP) method for mineral exploration is seldom used on land, primarily because of electrode noise problems and nonunique interpretations. Marine measurements of the horizontal gradient of the SP field, on the other hand, are relatively simple to make with an array of electrodes towed behind a ship. With low ship speeds of 5 to 10 km/hour, dense spatial sampling (∼1 m) can be obtained with resolution of better than 1 μV/m. In this paper we report on gradient SP data recorded on the continental shelf of South Australia by a horizontal array of towed electrodes approximately 20 m above the seafloor. Ocean waves and swells with periods of 5 to 15 s yielded large amplitude signals ±20 μV/m, but subseafloor mineralization produced SP gradient anomalies of ±50 μV/m and widths of 2 km or more in a number of parallel traverses. Integrating the observed SP gradients along each line delineated SP anomalies of amplitude up to −100 mV. Self-potential and magnetic anomaly data show limited spatial correlation and have different wavelengths, suggesting that SP sources are probably nonferrous minerals, such as graphite, and are deeper than the magnetic sources. The source of the SP signal is probably reduction-oxidation (redox) potential ([Formula: see text]) variations across a conducting body below the seafloor. We approximate the source as being two dimensional and find the most probable locations of line sources by an image reconstruction method. Numerical finite-element modeling of more realistic source regions suggests shallow, easterly dipping (∼15°) conductors of 1 Ω.m in the uppermost 2 km.


2019 ◽  
Vol 2019 ◽  
pp. 1-19 ◽  
Author(s):  
N. Grobbe ◽  
S. Barde-Cabusson

We demonstrate the value of using the self-potential method to study volcanic environments, and particularly fluid flow in those environments. We showcase the fact that self-potential measurements are a highly efficient way to map large areas of volcanic systems under challenging terrain conditions, where other geophysical techniques may be challenging or expensive to deploy. Using case studies of a variety of volcano types, including tuff cones, shield volcanoes, stratovolcanoes, and monogenetic fields, we emphasize the fact that self-potential signals enable us to study fluid flow in volcanic settings on multiple spatial and temporal scales. We categorize the examples into the following three multiscale fluid-flow processes: (1) deep hydrothermal systems, (2) shallow hydrothermal systems, and (3) groundwater. These examples highlight the different hydrological, hydrothermal, and structural inferences that can be made from self-potential signals, such as insight into shallow and deep hydrothermal systems, cooling behavior of lava flows, different hydrogeological domains, upwelling, infiltration, and lateral groundwater and hydrothermal fluid flow paths and velocities, elevation of the groundwater level, crater limits, regional faults, rift zones, incipient collapse limits, structural domains, and buried calderas. The case studies presented in this paper clearly demonstrate that the measured SP signals are a result of the coplay between microscale processes (e.g., electrokinetic, thermoelectric) and macroscale structural and environmental features. We discuss potential challenges and their causes when trying to uniquely interpret self-potential signals. Through integration with different geophysical and geochemical data types such as subsurface electrical resistivity distributions obtained from, e.g., electrical resistivity tomography or magnetotellurics, soil CO2 flux, and soil temperature, it is demonstrated that the hydrogeological interpretations obtained from SP measurements can be better constrained and/or validated.


2004 ◽  
Vol 127 (4) ◽  
pp. 724-730 ◽  
Author(s):  
Fon-Chieh Chang ◽  
John R. Hull

A computer model was developed to predict eddy currents and fluid flows in molten steel. The model was verified by comparing predictions with experimental results of liquid-metal containment and fluid flow in electromagnetic (EM) edge dams (EMDs) designed at Inland Steel (Ispat Industries Ltd.) for twin-roll casting. This mathematical model can greatly shorten casting research on the use of EM fields for liquid metal containment and control. It can also optimize the existing casting processes and minimize expensive, time-consuming full-scale testing. The model was verified by comparing predictions with experimental results of liquid metal containment and fluid flow in EM edge dams designed at Inland Steel (Ispat Industries Ltd.) for twin-roll casting. Numerical simulation was performed by coupling a three-dimensional (3D) finite-element EM code (ELEKTRA) and a 3D finite-difference fluids code (CaPS-EM) to solve Maxwell’s equations, Ohm’s law, Navier-Stokes equations, and transport equations of turbulence flow in a casting process that uses EM fields. ELEKTRA is able to predict the eddy-current distribution and EM forces in complex geometry. CaPS-EM is capable of modeling fluid flows with free surfaces and dynamic rollers. The computed 3D magnetic fields and induced eddy currents in ELEKTRA are used as input to flow-field computations in CaPS-EM. Results of the numerical simulation compared well with measurements obtained from both static and dynamic tests.


2015 ◽  
Vol 772 ◽  
pp. 1-4 ◽  
Author(s):  
Greg A. Voth

Anisotropic particles are suspended in a wide range of industrial, environmental and biological fluid flows. The orientations of these particles are sometimes randomized by turbulence, but often they are brought into preferential alignment by the fluid flow. In a recently published study, Challabotla, Zhao & Andersson (J. Fluid Mech., vol. 766, 2015, R2) performed the first numerical simulations of inertial disks in a turbulent channel flow. They find that disks can be made to preferentially align either parallel or perpendicular to the wall depending on the particle density. Particle shape also affects alignment, particularly for lower density particles, and the alignment of disks is quite different from the alignment of fibres.


1998 ◽  
Vol 30 (2) ◽  
pp. 342-364 ◽  
Author(s):  
Howard M. Taylor ◽  
Dennis E. Sweitzer

Consider a network whose nodes are the integer lattice points and whose arcs are fuses of 1Ω resistance. Remove a horizontal segment ofNadjacent vertical arcs, forming a ‘crack’ of lengthN. Subject the network to a uniform potential gradient ofvvolts per arc in the north-south (or vertical) direction and measure the current in one of the two vertical arcs at the ends of the crack. We write this current in the forme(N)v, and calle(N) thecurrent enhancement.We show that the enhancement grows at a rate that is the order of the square root of the crack length. Our method is to identify the enhancement with the mean time to exit an interval for a certain integer valued random walk, and then to use some of the well-known Fourier methods for studying random walk. Our random walk has no mean or higher moments and is in the domain of attraction of the Cauchy law. We provide a good approximation to the enhancement using the explicitly known mean time to exit an interval for a Cauchy process. Weak convergence arguments together with an estimate of a recurrence probability enable us to show that the current in an intact fuse, that is in the interior of a crack of lengthN, grows p roportionally withN/logN.


Sign in / Sign up

Export Citation Format

Share Document