scholarly journals Production of Ferroboron from Wastes by SHS-metallurgy and influence of Ligatures on the Structure/Properties of Cast Iron

2021 ◽  
Vol 906 (1) ◽  
pp. 012008
Author(s):  
Garegin Zakharov ◽  
Zurab Aslamazashvili ◽  
Mikheil Chikhradze ◽  
Davit Kvaskhvadze ◽  
Nugzar Khidasheli ◽  
...  

Abstract Waste, generated during the industrial process negatively affects the environment, but at the same time it is a valuable raw material and can be used to produce new marketable products. The study of the effectiveness of Self-propagating High temperature Synthesis (SHS) methods, which are characterized by the simplicity of the necessary equipment, the purity of the final product and the high processing speed, is under the wide scientific and practical interest to solve the set problem. The work describes technological aspects of production of ferro boron by the method of SHS - metallurgy from iron-containing wastes of rolled production for alloying of cast iron and results of effect of alloying element on degree of boron assimilation with liquid cast iron. Features of Fe-B system combustion have been investigated and the main parameters to control the phase composition of synthesis products have been experimentally established. Effect of overloads on patterns of cast ligatures formation and mechanisms of structure formation of SHS products was studied. It has been shown that an increase in the content of hematite Fe2O3 in iron-containing waste leads to an increase in the content of phase FeB and accordingly, the amount of boron in the ligature. Boron content in ligature is within 3-14%, and phase composition of obtained ligatures consists of Fe2B and FeB phases. Depending on the initial composition of the wastes, the yield of the end product reaches 91 - 94%, and the extraction of boron is 70 - 88%. Combustion processes of high exothermic mixtures allow obtaining a wide range of boron-containing ligatures from industrial wastes. In view of the relatively low melting point of the obtained SHS-ligature, the positive dynamics of boron absorption by liquid iron is established. According to the obtained data, the degree of absorption of the ligature by alloying gray cast iron at 1450 ° C is 80 - 85%. When combined with the treatment of liquid cast iron with magnesium, followed by alloying with the developed ligature, boron losses are reduced by 5-7%. At that uniform distribution of boron micro-additives in volume of treated liquid metal is provided.

2020 ◽  
Vol 992 ◽  
pp. 253-258
Author(s):  
M.P. Lebedev ◽  
V.N. Tagrov ◽  
E.S. Lukin

The article deals with the manufacture of modern structural ceramic materials from clay and loam deposits of the Republic of Sakha (Yakutia). The importance and relevance of the development of the production of building materials from local raw materials is emphasized, since this will certainly affect the effectiveness of the construction complex as a whole. The successful development of the construction complex is capable of not only stimulating growth in all sectors of the economy, but also contributes to solving the most pressing social problems. Today, Yakutia has huge reserves of mineral raw materials for the production of a wide range of building materials and products. Of practical interest are wall materials made from clay soils. Given the features of the region’s raw material base, this work focuses on additional processing of traditional material. Controlling the complex physicochemical and structural-mechanical transformations that occur during heat treatment, a methodology has been developed for creating a composite material that will allow competitive innovative materials with enhanced strength properties to be produced with a reinforcing element with a glassy phase matrix of mullite crystals. The fabricated samples have a wide range of physical and mechanical properties and allow using it as a high-quality structural building ceramics, as well as industrial floor technical tile.


1989 ◽  
Vol 4 (2) ◽  
pp. 447-451 ◽  
Author(s):  
J. Majling ◽  
V. Jesenák ◽  
Della M. Roy ◽  
Rustum Roy

A method has been developed for determining the equilibrium phase composition of multicomponent systems at subsolidus conditions and atmospheric pressure, based on the knowledge of binary phase compatibilities and on information concerning the existence and stoichiometry of ternary and higher order compounds. The method, combined with material balance, enables computation of the changes of equilibrium phase compositions of fired products dependent on the proportions of multicomponent raw materials; the procedure is useful for assessing the exploitability of industrial wastes for production of binding materials and ceramics. It is also possible to find the raw material mixture composition needed for the desired phase composition of the fired product.


Materials ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3319 ◽  
Author(s):  
Phongthorn Julphunthong ◽  
Panuwat Joyklad

The aim of this research was to study the production of calcium sulfoaluminate (CSA) cement from several industrial waste materials including with marble dust waste, flue gas desulfurization gypsum, ceramics dust waste, and napier grass ash. The chemical composition, microstructure, and phase composition of raw materials were examined using energy dispersive X-ray fluorescence (EDXRF), scanning electron microscopy (SEM), and X-ray diffraction (XRD), respectively. All raw wastes were analyzed using their chemical composition to assign proportion for raw mixture. The raw mixture is calcined at controlled calcination temperatures ranging from 1200 °C to 1300 °C for 30 min. Subsequently, with analysis, their phase composition is calculated by the Rietveld refinement technique. The results suggested that phase composition of clinker calcined at 1250 °C shows the closest composition when compared to target phases, and was selected to prepare CSA cement. The FTIR analysis was performed to study the hydration processes of CSA cement. The Ordinary Portland cement (OPC) based with adding CSA cement between 20 wt.% and 40 wt.% were investigated for the effect of CSA cement fraction on water requirement, setting times and compressive strength. The results showed that rapid setting and high early strength can be achieved by the addition of 20–40 wt.% CSA cement to OPC.


2015 ◽  
Vol 2 (1) ◽  
pp. 6-12
Author(s):  
Agus Sugiarta ◽  
Houtman P. Siregar ◽  
Dedy Loebis

Automation of process control in chemical plant is an inspiring application field of mechatronicengineering. In order to understand the complexity of the automation and its application requireknowledges of chemical engineering, mechatronic and other numerous interconnected studies.The background of this paper is an inherent problem of overheating due to lack of level controlsystem. The objective of this research is to control the dynamic process of desired level more tightlywhich is able to stabilize raw material supply into the chemical plant system.The chemical plant is operated within a wide range of feed compositions and flow rates whichmake the process control become difficult. This research uses modelling for efficiency reason andanalyzes the model by PID control algorithm along with its simulations by using Matlab.


Author(s):  
C. Claire Thomson

The first book-length study in English of a national corpus of state-sponsored informational film, this book traces how Danish shorts on topics including social welfare, industry, art and architecture were commissioned, funded, produced and reviewed from the inter-war period to the 1960s. For three decades, state-sponsored short filmmaking educated Danish citizens, promoted Denmark to the world, and shaped the careers of renowned directors like Carl Th. Dreyer. Examining the life cycle of a representative selection of films, and discussing their preservation and mediation in the digital age, this book presents a detailed case study of how informational cinema is shaped by, and indeed shapes, its cultural, political and technological contexts.The book combines close textual analysis of a broad range of films with detailed accounts of their commissioning, production, distribution and reception in Denmark and abroad, drawing on Actor-Network Theory to emphasise the role of a wide range of entities in these processes. It considers a broad range of genres and sub-genres, including industrial process films, public information films, art films, the city symphony, the essay film, and many more. It also maps international networks of informational and documentary films in the post-war period, and explores the role of informational film in Danish cultural and political history.


Alloy Digest ◽  
1980 ◽  
Vol 29 (3) ◽  

Abstract AMPCOLOY 570 is a cast copper-nickel-aluminum-cobalt-iron alloy specially developed for applications involving severe stresses and high temperatures, such as glass-making molds and plate-glass rolls. It is significantly superior to cast iron which has been commonly used for glass-making molds. Good foundry techniques will yield high-quality castings of Ampcoloy 570 in a wide range of section sizes. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on high temperature performance and corrosion resistance as well as casting, heat treating, machining, and joining. Filing Code: Cu-392. Producer or source: Ampco Metal Inc..


Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2237 ◽  
Author(s):  
P. R. Sarika ◽  
Paul Nancarrow ◽  
Abdulrahman Khansaheb ◽  
Taleb Ibrahim

Phenol–formaldehyde (PF) resin continues to dominate the resin industry more than 100 years after its first synthesis. Its versatile properties such as thermal stability, chemical resistance, fire resistance, and dimensional stability make it a suitable material for a wide range of applications. PF resins have been used in the wood industry as adhesives, in paints and coatings, and in the aerospace, construction, and building industries as composites and foams. Currently, petroleum is the key source of raw materials used in manufacturing PF resin. However, increasing environmental pollution and fossil fuel depletion have driven industries to seek sustainable alternatives to petroleum based raw materials. Over the past decade, researchers have replaced phenol and formaldehyde with sustainable materials such as lignin, tannin, cardanol, hydroxymethylfurfural, and glyoxal to produce bio-based PF resin. Several synthesis modifications are currently under investigation towards improving the properties of bio-based phenolic resin. This review discusses recent developments in the synthesis of PF resins, particularly those created from sustainable raw material substitutes, and modifications applied to the synthetic route in order to improve the mechanical properties.


2021 ◽  
Vol 5 (6) ◽  
pp. 151
Author(s):  
Mustapha El Kanzaoui ◽  
Chouaib Ennawaoui ◽  
Saleh Eladaoui ◽  
Abdelowahed Hajjaji ◽  
Abdellah Guenbour ◽  
...  

Given the amount of industrial waste produced and collected in the world today, a recycling and recovery process is needed. The study carried out on this subject focuses on the valorization of one of these industrial wastes, namely the fly ash produced by an ultra-supercritical coal power plant. This paper describes the use and recovery of fly ash as a high percentage reinforcement for the development of a new high-performance composite material for use in various fields. The raw material, fly ash, comes from the staged combustion of coal, which occurs in the furnace of an ultra-supercritical boiler of a coal-fired power plant. Mechanical compression, thermal conductivity, and erosion tests are used to study the mechanical, thermal, and erosion behavior of this new composite material. The mineralogical and textural analyses of samples were characterized using Scanning Electron Microscopy (SEM). SEM confirmed the formation of a new composite by a polymerization reaction. The results obtained are very remarkable, with a high Young’s modulus and a criterion of insulation, which approves the presence of a potential to be exploited in the different fields of materials. In conclusion, the composite material presented in this study has great potential for building material and could represent interesting candidates for the smart city.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Christos Katsaros ◽  
Sophie Le Panse ◽  
Gillian Milne ◽  
Carl J. Carrano ◽  
Frithjof Christian Küpper

Abstract The objective of the present study is to examine the fine structure of vegetative cells of Laminaria digitata using both chemical fixation and cryofixation. Laminaria digitata was chosen due to its importance as a model organism in a wide range of biological studies, as a keystone species on rocky shores of the North Atlantic, its use of iodide as a unique inorganic antioxidant, and its significance as a raw material for the production of alginate. Details of the fine structural features of vegetative cells are described, with particular emphasis on the differences between the two methods used, i.e. conventional chemical fixation and freeze-fixation. The general structure of the cells was similar to that already described, with minor differences between the different cell types. An intense activity of the Golgi system was found associated with the thick external cell wall, with large dictyosomes from which numerous vesicles and cisternae are released. An interesting type of cisternae was found in the cryofixed material, which was not visible with the chemical fixation. These are elongated structures, in sections appearing tubule-like, close to the external cell wall or to young internal walls. An increased number of these structures was observed near the plasmodesmata of the pit fields. They are similar to the “flat cisternae” found associated with the forming cytokinetic diaphragm of brown algae. Their possible role is discussed. The new findings of this work underline the importance of such combined studies which reveal new data not known until now using the old conventional methods. The main conclusion of the present study is that cryofixation is the method of choice for studying Laminaria cytology by transmission electron microscopy.


Sign in / Sign up

Export Citation Format

Share Document