scholarly journals Adsorption Capacity of Ca2+ by Hydrochloric Acid Activated Kaolin

2021 ◽  
Vol 926 (1) ◽  
pp. 012082
Author(s):  
N Wahyuni

Abstract A high concentration of calcium ions in water is a problem as it can cause blockages in engine pipes. Adsorption is a relatively cheap and straightforward method that can be used to reduce the calcium ion content in water. Kaolin is a mineral that has a potential as an adsorbent and whose adsorption capacity can be increased by activation. This research studied the adsorption capacity of activated kaolin by hydrochloric acid against Ca2+ ions. Kaolin was chemically activated using 6 M HCl solution for 24 hours. The adsorption contact time in batches was varied with time variations of 30, 90, 150, and 180 minutes. The maximum adsorption capacity of activated kaolin to the Ca2+ was determined by varying the initial concentrations of water samples, namely 4, 7, 10, and 13 mg/L. The concentration of Ca2+ was determined by a titration method using ethylene diamine tetraacetate (EDTA). The results showed that the activation of kaolin with 6 M HCl at the optimum contact time of adsorption, namely 150 minutes, increased the percentage of adsorbed Ca ions to 2 times of that of natural kaolin, from 33.3% to 68.3%. Based on the Langmuir equation, the maximum adsorption capacity of calcium ions by activated kaolin HCl 6 M increased 1.7 times from natural kaolin to 0.346 mg/g.

Toxics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 111
Author(s):  
Maria Mihăilescu ◽  
Adina Negrea ◽  
Mihaela Ciopec ◽  
Petru Negrea ◽  
Narcis Duțeanu ◽  
...  

Gold is one of the precious metals with multiple uses, whose deposits are much smaller than the global production needs. Therefore, extracting maximum gold quantities from industrial diluted solutions is a must. Am-L-GA is a new material, obtained by an Amberlite XAD7-type commercial resin, functionalized through saturation with L-glutamic acid, whose adsorption capacity has been proved to be higher than those of other materials utilized for gold adsorption. In this context, this article presents the results of a factorial design experiment for optimizing the gold recovery from residual solutions resulting from the electronics industry using Am-L-GA. Firstly, the material was characterized using atomic force microscopy (AFM), to emphasize the material’s characteristics, essential for the adsorption quality. Then, the study showed that among the parameters taken into account in the analysis (pH, temperature, initial gold concentration, and contact time), the initial gold concentration in the solution plays a determinant role in the removal process and the contact time has a slightly positive effect, whereas the pH and temperature do not influence the adsorption capacity. The maximum adsorption capacity of 29.27 mg/L was obtained by optimizing the adsorption process, with the control factors having the following values: contact time ~106 min, initial Au(III) concentration of ~164 mg/L, pH = 4, and temperature of 25 °C. It is highlighted that the factorial design method is an excellent instrument to determine the effects of different factors influencing the adsorption process. The method can be applied for any adsorption process if it is necessary to reduce the number of experiments, to diminish the resources or time consumption, or for expanding the investigation domain above the experimental limits.


2017 ◽  
Vol 13 (27) ◽  
pp. 425
Author(s):  
Azeh Yakubu ◽  
Gabriel Ademola Olatunji ◽  
Folahan Amoo Adekola

This investigation was conducted to evaluate the adsorption capacity of nanoparticles of cellulose origin. Nanoparticles were synthesized by acid hydrolysis of microcrystalline cellulose/cellulose acetate using 64% H3PO4 and characterized using FTIR, XRD, TGA-DTGA, BET and SEM analysis. Adsorption kinetics of Pb (II) ions in aqueous solution was investigated and the effect of initial concentration, pH, time, adsorbent dosage and solution temperature. The results showed that adsorption increased with increasing concentration with removal efficiencies of 60% and 92.99% for Azeh2 and Azeh10 respectively for initial lead concentration of 3 mg/g. The effects of contact time showed that adsorption maximum was attained within 24h of contact time. The maximum adsorption capacity and removal efficiency were achieved at pH6. Small dose of adsorbent had better performance. The kinetics of adsorption was best described by the pseudo-second-Order model while the adsorption mechanism was chemisorption and pore diffusion based on intra-particle diffusion model. The isotherm model was Freundlich. Though, all tested isotherm models relatively showed good correlation coefficients ranging from 0.969-1.000. The adsorption process was exothermic for Azeh-TDI, with a negative value of -12.812 X 103 KJ/mol. This indicates that the adsorption process for Pb by Azeh-TDI was spontaneous. Adsorption by Azeh2 was endothermic in nature.


Polymers ◽  
2017 ◽  
Vol 9 (6) ◽  
pp. 201 ◽  
Author(s):  
Guojian Duan ◽  
Qiangqiang Zhong ◽  
Lei Bi ◽  
Liu Yang ◽  
Tonghuan Liu ◽  
...  

In this report, the β-CD(AN-co-AA) hydrogel was used to remove the thorium(IV) [Th(IV)] from the water system, and the new adsorbent was characterized through Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X-ray diffraction (XRD). The influences of contact time, pH value, ionic strength, solid-liquid ratio, initial Th(IV) concentration, and temperature on Th(IV) adsorption onto the functional hydrogel were researched. The results showed that the experimental data followed the Langmuir isotherm and the maximum adsorption capacity (qmax) for Th(IV) was 692 mg/g at pH 2.95, which approached the calculated (qe) 682 mg/g. The desorption capacity of Th(IV) in different HNO3 concentrations ranging from 0.005 to 0.5 M was also studied, and the percentage of the maximum desorption was 86.85% in the condition of 0.09 M HNO3. The selectivity of β-CD(AN-co-AA) hydrogel was also be studied, the results indicated that this material retained the good adsorption capacity to Th(IV) even when the Ca2+, Mg2+, or Pb2+ existed in the system. The findings indicate that β-CD(AN-co-AA) can be used as a new candidate for the enrichment and separation of Th(IV), or its analogue actinides, from large-volume solution in practical application.


2013 ◽  
Vol 807-809 ◽  
pp. 1155-1159 ◽  
Author(s):  
Qian Liao ◽  
Chun Long Cui ◽  
Jun Yi

The paper studied the growth law of Bacillus subtilis and Saccharomyces uvarum, and the interaction between the uranium system and strains in the different concentrations of uranium. The results showed that the B. subtilis almost appeared linear growth when uranium concentration was under the 450 mg/L, and the growth curve of the S.uvarum primarily met the S-growth curve model while uranium concentration was under the 600 mg/L. When the uranium concentration reaching 600 mg/L, the B. subtilis stopped growing, but the S. uvarum grown normally and had no significant difference compared with the control. The adsorption capacity of two strains increased with increasing uranium concentration under the 600 mg/L. While uranium concentration was 450 mg/L, the adsorption rate of two strains reached the maximum value (88.50%). The maximum adsorption capacity of B. subtilis and S. uvarum were 382.86 mgU/g and 113.04 mgU/g, respectively. In the real application, firstly, S. uvarum could be used to decrease the high concentration of uranium, and then B. subtilis was taken for further adsorption to achieve optimal effect of adsorption.


2017 ◽  
Vol 6 (1) ◽  
pp. 49-55 ◽  
Author(s):  
Farida Hanum ◽  
Rikardo Jgst Gultom ◽  
Maradona Simanjuntak

Durian is a kind of tropical fruits which can grow well in Indonesia. Durian is containing 60-75% shell. Durian shell could be a potential alternative to activated carbon because it contains 57.42% carbon. The aim of this research is to know the effect of contact time and  stirring speed to activated carbon adsorption capacity from durian shell with KOH and NaOH as activators. FTIR (Fourier Transform Infra Red) analysis showed the activation process effects on  absorption intensity  wavelength region and resulted in formation of C = C aromatic tape, so that the nature of the charcoal becomes more polar compared with the initial condition. Analysis using spectrophotometer UV-Vis to determine  absorbance and  final concentration of each variation of contact time and stirring speed. The results showed that the maximum adsorption capacity obtained by activation of KOH and NaOH on stirring speed of 150 rpm and a contact time of 90 minutes is equal to 3.92 mg / g and 3.8 mg / g respectively. The maximum surface area obtained by activation of KOH and NaOH during the stirring speed 130 rpm and a contact time of 120 minutes is equal to 1785.263 m2 / g and 1730.332 m2 / g respectively. The maximum surface area obtained from this research has met the standards of commercial activated carbon surface area was between 800-1800 m2/ g. Modeling pseudo second order presents a more representative adsorption data, a second order equation is based on the assumption that adsorption step is chemosorption.


2020 ◽  
Vol 23 (10) ◽  
pp. 370-376
Author(s):  
Thamrin Azis ◽  
La Ode Ahmad ◽  
Keke Awaliyah ◽  
Laode Abdul Kadir

Research on the equilibrium and adsorption kinetics of methylene blue dye using tannin gel from the Tingi tree (Ceriops tagal) has been carried out. This study aims to determine the capacity and adsorption kinetics of tannin gel against methylene blue dye. Several parameters, such as the effect of contact time, pH, and methylene blue dye concentration on adsorption, were also studied. Based on the research results, the optimum adsorption process is a contact time of 30 minutes and a pH of 7. The adsorption capacity increased to a concentration of 80 mg/L with a maximum adsorption capacity (qm) of 49.261 mg/g. The adsorption process follows the pseudo-second-order adsorption kinetics model and the Langmuir isotherm model.


Alotrop ◽  
2017 ◽  
Vol 1 (1) ◽  
Author(s):  
Melfi Puspita ◽  
M. Lutfi Firdaus ◽  
Nurhamidah Nurhamidah

The problem of environmental polution caused by waste of batik industry lately is increasing, so it needed a method to overcome that problem. The aim of this study was to determine the ability of activated charcoal from coconut fiber palm in adsorbing Reactive Red-120 and Direct Green-26 dyes in waste of batik along with determining the parameters of isotherms adsorption using UV-Vis Spectrophotometer analysis method. Variations of pH, contact time, adsorbent weight and temperature were carried out as variable to obtain optimum conditions of the adsorption process. The optimum of conditions for Reactive Red-120  occured at pH 3 and a contact time of 30 minutes, while Direct Green-26  occurred at pH 4 and a contact time of 40 minutes, with each adsorbent weight 150 mg and the temperature 30 °C. Adsorption isotherms determined by Freundlich and Langmuir models with maximum adsorption capacity (Qmax) were obtained for the Reactive Red-120  was 400 mg/g, while Direct Green-26 is 169 mg/g. 


Author(s):  
Nnaemeka John Okorocha ◽  
J. Josphine Okoji ◽  
Charles Osuji

The potential of almond leaves powder, (ALP) for the removal of Crystal violet (CV) and Congo red (CR) dyes from aqueous solution was investigated. The adsorbent (ALP) was characterized by FTIR and SEM analysis. Batch adsorption studies were conducted and various parameters such as contact time, adsorbent dosage, initial dye concentration, pH and temperature were studied to observe their effects in the dyes adsorption process. The optimum conditions for the adsorption of CV and CR dyes onto the adsorbent (ALP) was found to be: contact time (100mins), pH (10.0), temperature (343K) for an initial CV dye concentration of 50mg/L using adsorbent dose of 1.0g and contact time (100mins), pH (2.0), temperature (333K) for an initial CR dye concentration of 50mg/L using adsorbent dose 1.0g respectively. The experimental equilibrium adsorption data fitted best and well to the Freundlich isotherm model for both CV and CR dyes adsorption. The maximum adsorption capacity of ALP was found to be 22.96mg/g and 7.77mg/g for the adsorption of CV and CR dyes respectively. The kinetic data conformed to the pseudo-second-order kinetic model. Thermodynamic quantities such as Gibbs free energy (ΔG0), enthalpy (ΔH0) and entropy (ΔS0) were evaluated and the negative values of ΔG0obtained for both dyes indicate the spontaneous nature of the adsorption process while the positive values of ΔH0and ΔS0obtained indicated the endothermic nature and increased randomness during the adsorption process respectively for the adsorption of CV and CR onto ALP. Based on the results obtained such as good adsorption capacity, rapid kinetics, and its low cost, ALP appears to be a promising adsorbent material for the removal of CV and CR dye stuff from aqueous media.


Molecules ◽  
2020 ◽  
Vol 25 (16) ◽  
pp. 3692
Author(s):  
Oana Buriac ◽  
Mihaela Ciopec ◽  
Narcis Duţeanu ◽  
Adina Negrea ◽  
Petru Negrea ◽  
...  

Platinum is a precious metal with many applications, such as: catalytic converters, laboratory equipment, electrical contacts and electrodes, digital thermometers, dentistry, and jewellery. Due to its broad usage, it is essential to recover it from waste solutions resulted out of different technological processes in which it is used. Over the years, several recovery techniques were developed, adsorption being one of the simplest, effective and economical method used for platinum recovery. In the present paper a new adsorbent material (XAD7-DB30C10) for Pt (IV) recovery was used. Produced adsorbent material was characterized by X-ray dispersion (EDX), scanning electron microscopy (SEM) analysis, Fourier Transform Infrared Spectroscopy and Brunauer-Emmett-Teller (BET) surface area analysis. Adsorption isotherms, kinetic models, thermodynamic parameters and adsorption mechanism are presented in this paper. Experimental data were fitted using three non-linear adsorption isotherms: Langmuir, Freundlich and Sips, being better fitted by Sips adsorption isotherm. Obtained kinetic data were correlated well with the pseudo-second-order kinetic model, indicating that the chemical sorption was the rate-limiting step. Thermodynamic parameters (ΔG°, ΔH°, ΔS°) showed that the adsorption process was endothermic and spontaneous. After adsorption, metallic platinum was recovered from the exhausted adsorbent material by thermal treatment. Adsorption process optimisation by design of experiments was also performed, using as input obtained experimental data, and taking into account that initial platinum concentration and contact time have a significant effect on the adsorption capacity. From the optimisation process, it has been found that the maximum adsorption capacity is obtained at the maximum variation domains of the factors. By optimizing the process, a maximum adsorption capacity of 15.03 mg g−1 was achieved at a contact time of 190 min, initial concentration of 141.06 mg L−1 and the temperature of 45 °C.


2020 ◽  
Vol 12 (7) ◽  
pp. 1078-1089
Author(s):  
Hongna Xu ◽  
Liguo Jin ◽  
Yan Cheng

Metal organic skeleton (MOFs) is a kind of porous material composed of metal ions and organic ligands through coordination, which can be used to absorb a lot of toxic substances from waste water. In this research, UiO-66, UiO-66(Zr) and UiO-66(Zr)–2COOH were synthesized by solvent thermal method, and physical analysis was conducted on the adsorbent properties of the materials by means of XRD, IR, Zeta potential, etc. In the adsorption test of wastewater impurities, UiO-66(Zr)–2COOH was firstly taken as the research object. With the increase of the initial concentration of hydrochloric acid, the adsorption capacity of the organic skeleton was greatly increased. However, when the concentration increases further, the growth rate of adsorption decreases, and with the increase of temperature, the adsorption decreases further. The organic skeleton of Hg(II) adsorption process conforms to the secondary dynamic adsorption model. At the same time, the organic skeleton materials of Hg(II) has strong ability of recognition, the recognition of Hg(II) sex is much stronger than the Ni(II) identification. Uio-66(Zr) and UiO-66(Zr)–2COOH are selected for adsorption of As, and the adsorption process of the two kinds of materials of As is close to the Freundlich model(III). The ability of absorbing As(III) of these materials is stronger than the ability of As(V). At the same time, UiO-66(Zr)–2COOH shows higher adsorption capacity on the As(III), and maximum adsorption capacity is 220 mg/g.


Sign in / Sign up

Export Citation Format

Share Document