scholarly journals Single-cell variation leads to population invariance in NF-κB signaling dynamics

2015 ◽  
Vol 26 (3) ◽  
pp. 583-590 ◽  
Author(s):  
Jacob J. Hughey ◽  
Miriam V. Gutschow ◽  
Bryce T. Bajar ◽  
Markus W. Covert

The activation dynamics of nuclear factor (NF)-κB have been shown to affect downstream gene expression. On activation, NF-κB shuttles back and forth across the nuclear envelope. Many dynamic features of this shuttling have been characterized, and most features vary significantly with respect to ligand type and concentration. Here, we report an invariant feature with regard to NF-κB dynamics in cellular populations: the distribution—the average, as well as the variance—of the time between two nuclear entries (the period). We find that this period is conserved, regardless of concentration and across several different ligands. Intriguingly, the distributions observed at the population level are not observed in individual cells over 20-h time courses. Instead, the average period of NF-κB nuclear translocation varies considerably among single cells, and the variance is much smaller within a cell than that of the population. Finally, analysis of daughter-cell pairs and isogenic populations indicates that the dynamics of the NF-κB response is heritable but diverges over multiple divisions, on the time scale of weeks to months. These observations are contrary to the existing theory of NF-κB dynamics and suggest an additional level of control that regulates the overall distribution of translocation timing at the population level.

2017 ◽  
Author(s):  
Alejandro A. Granados ◽  
Julian M. J. Pietsch ◽  
Sarah A. Cepeda-Humerez ◽  
Gašsper Tkačik ◽  
Peter S. Swain

AbstractAlthough cells respond specifically to environments, how environmental identity is encoded intracellularly is not understood. Here we study this organization of information in budding yeast by estimating the mutual information between environmental transitions and the dynamics of nuclear translocation for ten transcription factors. Our method of estimation is general, scalable, and based on decoding from single cells. The dynamics of the transcription factors are necessary to encode the highest amounts of extracellular information, and we show that information is transduced through two channels: generalists (Msn2/4, Tod6/Dot6, Maf1, and Sfp1) can encode the nature of multiple stresses but only if stress is high; specialists (Hog1, Yap1, and Mig1/2) encode one particular stress, but do so more quickly and for a wider range of magnitudes. Each transcription factor reports differently, and it is only their collective response that distinguishes between multiple environmental states. Changes in the dynamics of the localization of transcription factors thus constitute a precise, distributed internal representation of extracellular change, and we predict that such multi-dimensional representations are common in cellular decision-making.Significance StatementTo thrive in diverse environments, cells must represent extracellular change intracellularly despite stochastic biochemistry. Here we introduce a quantitative framework for investigating the organization of information within a cell. Combining single-cell measurements of intracellular dynamics with a new, scalable methodology for estimating mutual information between time-series and a discrete input, we demonstrate that extracellular information is encoded in the dynamics of the nuclear localization of transcription factors and that information is lost with alternative static statistics. Any one transcription factor is usually insufficient, but the collective dynamics of multiple transcription factors can represent complex extracellular change. We therefore show that a cell’s internal representation of its environment can be both distributed across diverse proteins and dynamically encoded.


2021 ◽  
Author(s):  
Priyanikha Jayakumar ◽  
Stephen A. Thomas ◽  
Sam P Brown ◽  
Rolf Kuemmerli

Bacteria engage in a cell-to-cell communication process called quorum sensing (QS) to coordinate expression of cooperative exoproducts at the group level. While population-level QS-responses are well studied, we know little about commitments of single cells to QS. Here, we use flow cytometry to track the investment of Pseudomonas aeruginosa individuals into their intertwined Las and Rhl QS-systems. Using fluorescent reporters, we show that QS gene expression (signal synthase, receptor and exoproduct) was heterogenous and followed a gradual instead of a sharp temporal induction pattern. The simultaneous monitoring of two QS genes revealed that cells transiently segregate into low receptor (lasR) expressers that fully commit to QS, and high receptor expressers that delay QS commitment. Our mathematical model shows that such gene expression segregation could mechanistically be spurred by transcription factor limitation. In evolutionary terms, temporal segregation could serve as a QS-brake to allow for a bet-hedging strategy in unpredictable environments.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jonas Mattisson ◽  
Marcus Danielsson ◽  
Maria Hammond ◽  
Hanna Davies ◽  
Caroline J. Gallant ◽  
...  

AbstractMosaic loss of chromosome Y (LOY) in immune cells is a male-specific mutation associated with increased risk for morbidity and mortality. The CD99 gene, positioned in the pseudoautosomal regions of chromosomes X and Y, encodes a cell surface protein essential for several key properties of leukocytes and immune system functions. Here we used CITE-seq for simultaneous quantification of CD99 derived mRNA and cell surface CD99 protein abundance in relation to LOY in single cells. The abundance of CD99 molecules was lower on the surfaces of LOY cells compared with cells without this aneuploidy in all six types of leukocytes studied, while the abundance of CD proteins encoded by genes located on autosomal chromosomes were independent from LOY. These results connect LOY in single cells with immune related cellular properties at the protein level, providing mechanistic insight regarding disease vulnerability in men affected with mosaic chromosome Y loss in blood leukocytes.


2006 ◽  
Vol 84 (3-4) ◽  
pp. 287-297 ◽  
Author(s):  
Fernand Gobeil ◽  
Audrey Fortier ◽  
Tang Zhu ◽  
Michela Bossolasco ◽  
Martin Leduc ◽  
...  

G-protein-coupled receptors (GPCRs) comprise a wide family of monomeric heptahelical glycoproteins that recognize a broad array of extracellular mediators including cationic amines, lipids, peptides, proteins, and sensory agents. Thus far, much attention has been given towards the comprehension of intracellular signaling mechanisms activated by cell membrane GPCRs, which convert extracellular hormonal stimuli into acute, non-genomic (e.g., hormone secretion, muscle contraction, and cell metabolism) and delayed, genomic biological responses (e.g., cell division, proliferation, and apoptosis). However, with respect to the latter response, there is compelling evidence for a novel intracrine mode of genomic regulation by GPCRs that implies either the endocytosis and nuclear translocation of peripheral-liganded GPCR and (or) the activation of nuclearly located GPCR by endogenously produced, nonsecreted ligands. A noteworthy example of the last scenario is given by heptahelical receptors that are activated by bioactive lipoids (e.g., PGE2 and PAF), many of which may be formed from bilayer membranes including those of the nucleus. The experimental evidence for the nuclear localization and signalling of GPCRs will be reviewed. We will also discuss possible molecular mechanisms responsible for the atypical compartmentalization of GPCRs at the cell nucleus, along with their role in gene expression.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1545
Author(s):  
Laura Ordas ◽  
Luca Costa ◽  
Anthony Lozano ◽  
Christopher Chevillard ◽  
Alexia Calovoulos ◽  
...  

The plasma membrane is a key actor of cell migration. For instance, its tension controls persistent cell migration and cell surface caveolae integrity. Then, caveolae constituents such as caveolin-1 can initiate a mechanotransduction loop that involves actin- and focal adhesion-dependent control of the mechanosensor YAP to finely tune cell migration. Tetraspanin CD82 (also named KAI-1) is an integral membrane protein and a metastasis suppressor. Its expression is lost in many cancers including breast cancer. It is a strong inhibitor of cell migration by a little-known mechanism. We demonstrated here that CD82 controls persistent 2D migration of EGF-induced single cells, stress fibers and focal adhesion sizes and dynamics. Mechanistically, we found that CD82 regulates membrane tension, cell surface caveolae abundance and YAP nuclear translocation in a caveolin-1-dependent manner. Altogether, our data show that CD82 controls 2D cell migration using membrane-driven mechanics involving caveolin and the YAP pathway.


1976 ◽  
Vol 24 (1) ◽  
pp. 11-15 ◽  
Author(s):  
R C Wolley ◽  
H M Dembitzer ◽  
F Herz ◽  
K Schreiber ◽  
L G Koss

A simple and reliable method of determining the degree of dispersion of a cell suspension has been developed using the Perkin-Elmer Uni-Smear Spinner. Optimum conditions regarding rate and duration of spin, etc., were first ascertained using dispersed cell cultures including human cervical cancer cells as well as gynecologic samples. After spinning, single cells in suspension appeared as isolated cells on the slides. Cell aggregates, on the other hand, remained together. Therefore, the distribution of cells in various sized aggregates could be easily quantitated and the slides retained for future review. This method was used to evaluate the dispersing effects of trypsin, ethylenediaminetetraacetate and and syringing human on human gynecology samples obtained by routine cervical scrapes. None of the dispersion methods has, so far, produced an adequate monodispersed cell suspension without unacceptable cell loss.


2021 ◽  
Author(s):  
Abhirup Shaw ◽  
Beáta B. Tóth ◽  
Robert Kiraly ◽  
Rini Arianti ◽  
István Csomós ◽  
...  

Thermogenic brown and beige adipocytes play an important role in combating obesity. Recent studies in rodents and humans have indicated that these adipocytes release cytokines, termed "batokines". Irisin was discovered as a polypeptide regulator of beige adipocytes released by myocytes, primarily during exercise. We performed global RNA sequencing on adipocytes derived from human subcutaneous and deep-neck precursors, which were differentiated in the presence or absence of irisin. Irisin did not exert an effect on the expression of characteristic thermogenic genes, while upregulated genes belonging to various cytokine signaling pathways. Out of the several upregulated cytokines, CXCL1, the highest upregulated, was released throughout the entire differentiation period, and predominantly by differentiated adipocytes. Deep-neck area tissue biopsies also showed a significant release of CXCL1 during 24 hours irisin treatment. Gene expression data indicated upregulation of the NFκB pathway upon irisin treatment, which was validated by an increase of p50 and decrease of IκBα protein level, respectively. Continuous blocking of the NFκB pathway, using a cell permeable inhibitor of NFκB nuclear translocation, significantly reduced CXCL1 release. The released CXCL1 exerted a positive effect on the adhesion of endothelial cells. Together, our findings demonstrate that irisin stimulates the release of a novel "batokine", CXCL1, via upregulation of NFκB pathway in neck area derived adipocytes, which might play an important role in improving tissue vascularization.


2019 ◽  
Vol 85 (18) ◽  
Author(s):  
Yutaka Yawata ◽  
Tatsunori Kiyokawa ◽  
Yuhki Kawamura ◽  
Tomohiro Hirayama ◽  
Kyosuke Takabe ◽  
...  

ABSTRACT Here we analyzed the innate fluorescence signature of the single microbial cell, within both clonal and mixed populations of microorganisms. We found that even very similarly shaped cells differ noticeably in their autofluorescence features and that the innate fluorescence signatures change dynamically with growth phases. We demonstrated that machine learning models can be trained with a data set of single-cell innate fluorescence signatures to annotate cells according to their phenotypes and physiological status, for example, distinguishing a wild-type Aspergillus nidulans cell from its nitrogen metabolism mutant counterpart and log-phase cells from stationary-phase cells of Pseudomonas putida. We developed a minimally invasive method (confocal reflection microscopy-assisted single-cell innate fluorescence [CRIF] analysis) to optically extract and catalog the innate cellular fluorescence signatures of each of the individual live microbial cells in a three-dimensional space. This technique represents a step forward from traditional techniques which analyze the innate fluorescence signatures at the population level and necessitate a clonal culture. Since the fluorescence signature is an innate property of a cell, our technique allows the prediction of the types or physiological status of intact and tag-free single cells, within a cell population distributed in a three-dimensional space. Our study presents a blueprint for a streamlined cell analysis where one can directly assess the potential phenotype of each single cell in a heterogenous population by its autofluorescence signature under a microscope, without cell tagging. IMPORTANCE A cell’s innate fluorescence signature is an assemblage of fluorescence signals emitted by diverse biomolecules within a cell. It is known that the innate fluoresce signature reflects various cellular properties and physiological statuses; thus, they can serve as a rich source of information in cell characterization as well as cell identification. However, conventional techniques focus on the analysis of the innate fluorescence signatures at the population level but not at the single-cell level and thus necessitate a clonal culture. In the present study, we developed a technique to analyze the innate fluorescence signature of a single microbial cell. Using this novel method, we found that even very similarly shaped cells differ noticeably in their autofluorescence features, and the innate fluorescence signature changes dynamically with growth phases. We also demonstrated that the different cell types can be classified accurately within a mixed population under a microscope at the resolution of a single cell, depending solely on the innate fluorescence signature information. We suggest that single-cell autofluoresce signature analysis is a promising tool to directly assess the taxonomic or physiological heterogeneity within a microbial population, without cell tagging.


2021 ◽  
Author(s):  
Adam Stowie ◽  
Zhimei Qiao ◽  
Daniella Do Carmo Buonfiglio ◽  
J. Christopher Ehlen ◽  
Morris Benveniste ◽  
...  

AbstractThe Suprachiasmatic Nucleus (SCN) is composed of functionally distinct sub-populations of GABAergic neurons such as vasoactive intestinal polypeptide (VIP)-, arginine vasopressin (AVP)-, gastrin releasing peptide (GRP)-, and neuromedin S (NMS)-expressing neurons which form a neural network responsible for synchronizing most physiological and behavioral circadian rhythms in mammals. To date, little is known regarding which aspects of SCN rhythmicity are generated by individual SCN neurons or neuronal sub-populations and which aspects result from neuronal interaction within a network. In this study, we address this question utilizing in vivo miniaturized microscopy to measure fluorescent GCaMP-mediated calcium dynamics in AVP neurons in the intact SCN of awake, behaving mice. This approach permits analysis of rhythms of single cells, populations, and correlational analysis among groups of AVP neurons in a field of view across the circadian and diurnal day and night. We report that AVP neurons in the murine SCN exhibit a periodic oscillatory increase in calcium of approximately 14 seconds across the day and night, in both constant darkness and under a 12:12 light-dark (LD) cycle. Using in vivo optogentically-targeted single unit activity recording, we demonstrated that these slow calcium waves are likely the result of burst-firing characteristic of AVP neurons previously reported for other brain regions. Rhythmicity analysis of several fluorescence measures suggests that individual AVP neurons exhibit unstable and stochastic rhythms, with approximately 30% of the neurons rhythmic during any given day across lighting conditions, and weak or absent rhythmicity at the population level. Network-level cross-correlational analysis revealed that coherence among neuron pairs also exhibited stochastic rhythms with about 25% of pairs rhythmic at any time. Notably, this analysis revealed a stronger rhythm at the population level than was observed in single cell analysis. The peak time of maximal coherence among AVP neuronal pairs occurs between CT/ZT 6 and 9, coinciding with the timing of maximal neuronal activity with the SCN as a whole. These results are the first to demonstrate robust circadian variation in the coordination between apparently weakly rhythmic or arrhythmic neurons suggesting that, for AVP neurons, interactions between neurons in the SCN are more influential than individual or single subpopulation activity in the regulation of mammalian circadian rhythms.


2020 ◽  
Vol 219 (9) ◽  
Author(s):  
Manuel Chiusa ◽  
Wen Hu ◽  
Jozef Zienkiewicz ◽  
Xiwu Chen ◽  
Ming-Zhi Zhang ◽  
...  

Excessive accumulation of collagen leads to fibrosis. Integrin α1β1 (Itgα1β1) prevents kidney fibrosis by reducing collagen production through inhibition of the EGF receptor (EGFR) that phosphorylates cytoplasmic and nuclear proteins. To elucidate how the Itgα1β1/EGFR axis controls collagen synthesis, we analyzed the levels of nuclear tyrosine phosphorylated proteins in WT and Itgα1-null kidney cells. We show that the phosphorylation of the RNA-DNA binding protein fused in sarcoma (FUS) is higher in Itgα1-null cells. FUS contains EGFR-targeted phosphorylation sites and, in Itgα1-null cells, activated EGFR promotes FUS phosphorylation and nuclear translocation. Nuclear FUS binds to the collagen IV promoter, commencing gene transcription that is reduced by inhibiting EGFR, down-regulating FUS, or expressing FUS mutated in the EGFR-targeted phosphorylation sites. Finally, a cell-penetrating peptide that inhibits FUS nuclear translocation reduces FUS nuclear content and collagen IV transcription. Thus, EGFR-mediated FUS phosphorylation regulates FUS nuclear translocation and transcription of a major profibrotic collagen gene. Targeting FUS nuclear translocation offers a new antifibrotic therapy.


Sign in / Sign up

Export Citation Format

Share Document