scholarly journals Unveiling the immune infiltrate modulation in cancer and response to immunotherapy by MIXTURE—an enhanced deconvolution method

Author(s):  
Elmer A Fernández ◽  
Yamil D Mahmoud ◽  
Florencia Veigas ◽  
Darío Rocha ◽  
Matías Miranda ◽  
...  

Abstract The accurate quantification of tumor-infiltrating immune cells turns crucial to uncover their role in tumor immune escape, to determine patient prognosis and to predict response to immune checkpoint blockade. Current state-of-the-art methods that quantify immune cells from tumor biopsies using gene expression data apply computational deconvolution methods that present multicollinearity and estimation errors resulting in the overestimation or underestimation of the diversity of infiltrating immune cells and their quantity. To overcome such limitations, we developed MIXTURE, a new ν-support vector regression-based noise constrained recursive feature selection algorithm based on validated immune cell molecular signatures. MIXTURE provides increased robustness to cell type identification and proportion estimation, outperforms the current methods, and is available to the wider scientific community. We applied MIXTURE to transcriptomic data from tumor biopsies and found relevant novel associations between the components of the immune infiltrate and molecular subtypes, tumor driver biomarkers, tumor mutational burden, microsatellite instability, intratumor heterogeneity, cytolytic score, programmed cell death ligand 1 expression, patients’ survival and response to anti-cytotoxic T-lymphocyte-associated antigen 4 and anti-programmed cell death protein 1 immunotherapy.

2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Sergio Ayala-Mar ◽  
Javier Donoso-Quezada ◽  
José González-Valdez

Inhibiting the programmed cell death ligand-1 (PD-L1)/programmed cell death receptor-1 (PD-1) signaling axis reinvigorates the antitumor immune response with remarkable clinical efficacy. Yet, low response rates limit the benefits of immunotherapy to a minority of patients. Recent studies have explored the importance of PD-L1 as a transmembrane protein in exosomes and have revealed exosomal PD-L1 as a mechanism of tumor immune escape and immunotherapy resistance. Exosomal PD-L1 suppresses T cell effector function, induces systemic immunosuppression, and transfers functional PD-L1 across the tumor microenvironment (TME). Because of its significant contribution to immune escape, exosomal PD-L1 has been proposed as a biomarker to predict immunotherapy response and to assess therapeutic efficacy. In this review, we summarize the immunological mechanisms of exosomal PD-L1, focusing on the factors that lead to exosome biogenesis and release. Next, we review the effect of exosomal PD-L1 on T cell function and its role across the TME. In addition, we discuss the latest findings on the use of exosomal PD-L1 as a biomarker for cancer immunotherapy. Throughout this review, we propose exosomal PD-L1 as a critical mediator of tumor progression and highlight the clinical implications that follow for immuno-oncology, discussing the potential to target exosomes to advance cancer treatment.


2021 ◽  
Vol 11 ◽  
Author(s):  
Wenxiang Zhang ◽  
Xiangyi Kong ◽  
Bolun Ai ◽  
Zhongzhao Wang ◽  
Xiangyu Wang ◽  
...  

Tumor immune escape refers to the phenomenon in which tumor cells escape the recognition and attack of the body’s immune system through various mechanisms so that they can survive and proliferate in vivo. The imbalance of immune checkpoint protein expression is the primary mechanism for breast cancer to achieve immune escape. Cytotoxic T lymphocyte antigen 4 (CTLA4) and programmed cell death protein 1 (PD-1)/programmed cell death protein-ligand 1 (PD-L1) are critical immune checkpoints for breast cancer. Immune checkpoint inhibitors block the checkpoint and relieve its inhibition effect on immune cells, reactivate T-cells and destroy cancer cells and restore the body’s ability to resist tumors. At present, immunological checkpoint inhibitors have made significant progress in breast cancer immunotherapy, and it is expected to become a new treatment for breast cancer.


Author(s):  
Lifang Zhang ◽  
Yu Zhao ◽  
Quanmei Tu ◽  
Xiangyang Xue ◽  
Xueqiong Zhu ◽  
...  

Background: Cervical cancer induced by infection with human papillomavirus (HPV) remains a leading cause of mortality for women worldwide although preventive vaccines and early diagnosis have reduced morbidity and mortality. Advanced cervical cancer can only be treated with either chemotherapy or radiotherapy but outcomes are poor. The median survival for advanced cervical cancer patients is only 16.8 months. Methods: We undertook a structural search of peer-reviewed published studies based on 1). Characteristics of programmed cell death ligand-1/programmed cell death-1(PD-L1/PD-1) expression in cervical cancer and upstream regulatory signals of PD-L1/PD-1 expression, 2). The role of the PD-L1/PD-1 axis in cervical carcinogenesis induced by HPV infection and 3). Whether the PD-L1/PD-1 axis has emerged as a potential target for cervical cancer therapies. Results: One hundred and twenty-six published papers were included in the review, demonstrating that expression of PD-L1/PD-1 is associated with HPV-caused cancer, especially with HPV 16 and 18 which account for approximately 70% of cervical cancer cases. HPV E5/E6/E7 oncogenes activate multiple signaling pathways including PI3K/AKT, MAPK, hypoxia-inducible factor 1α, STAT3/NF-kB and MicroRNAs, which regulate PD-L1/PD-1 axis to promote HPV-induced cervical carcinogenesis. The PD-L1/PD-1 axis plays a crucial role in immune escape of cervical cancer through inhibition of host immune response. creating an "immune-privileged" site for initial viral infection and subsequent adaptive immune resistance, which provides a rationale for therapeutic blockade of this axis in HPV-positive cancers. Currently, Phase I/II clinical trials evaluating the effects of PD-L1/PD-1 targeted therapies are in progress for cervical carcinoma, which provide an important opportunity for the application of anti-PD-L1/anti-PD-1 antibodies in cervical cancer treatment. Conclusion: Recent research developments have led to an entirely new class of drugs using antibodies against the PD-L1/PD-1 thus promoting the body’s immune system to fight the cancer. The expression and roles of the PD-L1/ PD-1 axis in the progression of cervical cancer provide great potential for using PD-L1/PD-1 antibodies as a targeted cancer therapy.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A528-A528
Author(s):  
Lin Ma ◽  
Jian-Hua Mao ◽  
Mary Helen Barcellos-Hoff ◽  
Jade Moore

BackgroundCheckpoint inhibitors can induce robust and durable responses in a subset of patients. Extending this benefit to more patients could be facilitated by better understanding of how interacts with immune cells with the tumor microenvironment, which is a critical barrier to control both local and systemic disease. The composition and pattern of the immune infiltrate associates with the likelihood of response to immunotherapy. Inflamed tumors that exhibit a brisk immune cell infiltrate are responsive, while those in which immune cells are completely or partially excluded are not. Transforming growth factor β (TGFβ) is immunosuppressive and associated with the immune excluded phenotype.MethodsUsing an immune competent mammary tumor derived transplant (mTDT) model recently developed in our lab, exhibits inflamed, excluded or deserts immune infiltrate phenotypes based on localization of CD8 lymphocytes. Using whole transcriptome deep sequencing, cytof, and PET-CT imaging, we evaluated the tumor, microenvironment, and immune pathway activation among immune infiltrate phenotypes.ResultsThree distinct inflamed tumors phenotypes were identified: ‘classically’ inflamed characterized by pathway evidence of increased CD8+ T cells and decreased PD-L1 expression, inflamed tumors with pathways indicative of neovascularization and STAT3 signaling and reduced T cell mobilization, and an inflamed tumor with increased immunosuppressive myeloid phenotypes. Excluded tumors were characterized by TGFβ gene expression and pro-inflammatory cytokine signaling (e.g. TNFα, IL1β), associated with decreased leukocytes homing and increased immune cell death of cells. We visualized and quantified TGFβ activity using PET-CT imaging of 89Zr-fresolimumab, a TGFβ neutralizing antibody. TGFβ activity was significantly increased in excluded tumors compared to inflamed or desert tumors, which was supported by quantitative pathology (Perkin Elmer) of its canonical signaling target, phosphorylated SMAD2 (pSMAD2). pSMAD2 was positively correlated with PD-L1 expression in the stroma of excluded tumors. In contrast, in inflamed tumors, TGFβ activity positively correlated with increased F4/80 positive macrophages and negatively correlated with expression of PD-L1. CyTOF analysis of tumor and spleen immune phenotypes revealed increased trafficking of myeloid cells in mice bearing inflamed tumors compared to excluded and deserts.ConclusionsThe immunocompetent mTDT provides a model that bridges the gap between the immune landscape and tumor microenvironment. Integration of these high-dimensional data with further studies of response to immunotherapies will help to identify tumor features that favor response to treatment or the means to convert those that are unresponsive.


Biomedicines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 194
Author(s):  
Jutta Ries ◽  
Abbas Agaimy ◽  
Falk Wehrhan ◽  
Christoph Baran ◽  
Stella Bolze ◽  
...  

Background: The programmed cell death ligand 1/programmed cell death receptor 1 (PD-L1/PD-1) Immune Checkpoint is an important modulator of the immune response. Overexpression of the receptor and its ligands is involved in immunosuppression and the failure of an immune response against tumor cells. PD-1/PD-L1 overexpression in oral squamous cell carcinoma (OSCC) compared to healthy oral mucosa (NOM) has already been demonstrated. However, little is known about its expression in oral precancerous lesions like oral leukoplakia (OLP). The aim of the study was to investigate whether an increased expression of PD-1/PD-L1 already exists in OLP and whether it is associated with malignant transformation. Material and Methods: PD-1 and PD-L1 expression was immunohistologically analyzed separately in the epithelium (E) and the subepithelium (S) of OLP that had undergone malignant transformation within 5 years (T-OLP), in OLP without malignant transformation (N-OLP), in corresponding OSCC and in NOM. Additionally, RT-qPCR analysis for PD-L1 expression was done in the entire tissues. Additionally, the association between overexpression and malignant transformation, dysplasia and inflammation were examined. Results: Compared to N-OLP, there were increased levels of PD-1 protein in the epithelial and subepithelial layers of T-OLP (pE = 0.001; pS = 0.005). There was no significant difference in PD-L1 mRNA expression between T-OLP and N-OLP (p = 0.128), but the fold-change increase between these groups was significant (Relative Quantification (RQ) = 3.1). In contrast to N-OLP, the PD-L1 protein levels were significantly increased in the epithelial layers of T-OLP (p = 0.007), but not in its subepithelial layers (p = 0.25). Importantly, increased PD-L1 levels were significantly associated to malignant transformation within 5 years. Conclusion: Increased levels of PD-1 and PD-L1 are related to malignant transformation in OLP and may represent a promising prognostic indicator to determine the risk of malignant progression of OLP. Increased PD-L1 levels might establish an immunosuppressive microenvironment, which could favor immune escape and thereby contribute to malignant transformation. Hence, checkpoint inhibitors could counteract tumor development in OLP and may serve as efficient therapeutic strategy in patients with high-risk precancerous lesions.


2021 ◽  
Author(s):  
guangping Li ◽  
Haiqiong Guo ◽  
linan zhao ◽  
Huixian Feng ◽  
Huawei He ◽  
...  

The combination of the human programmed cell death protein 1 (hPD-1) and its ligand hPD-L1 activates the immune escape of tumors, and the blockage in PD-1/PD-L1 involved pathway can enhance...


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Qian Gao ◽  
Hui-Ting Liu ◽  
Yu-Qin Xu ◽  
Lin Zhang ◽  
Yuan-Ru Liu ◽  
...  

Abstract Background Hypopharyngeal cancer (HPC) is associated with a poor prognosis and a high recurrence rate. Immune escape is one of the reasons for the poor prognosis of malignant tumors. Programmed cell death ligand 1 (PD-L1) and programmed cell death-1 (PD-1) have been shown to play important roles in immune escape. However, the role of PD-1/PD-L1 in HPC remains unclear. In this experiment, we investigated the effect of exosomes from HPC patient serum on CD8+ T cell function and PD-1/PD-L1 expression and, thus, on prognosis. We hope to provide guidance for the identification of new targets for HPC immunotherapy. Methods PD-1 and CD8 expression in 71 HPC tissues and 16 paracarcinoma tissues was detected by immunohistochemistry. Concurrently, the clinicopathological data of the patients were obtained to conduct correlation analysis. Exosomes were isolated from serum and then identified by Western blotting (WB), transmission electron microscopy (TEM), and nanoparticle tracking analysis (NTA). Flow cytometry was used to assess the activity of CD8+ T cells after exosome stimulation. The effects of exosomes on the ability of CD8+ T cells to kill FaDu cells were assessed by CCK-8 assay. The expression of IL-10 and TGF-β1 was measured by enzyme-linked immunosorbent assay (ELISA). PD-L1 expression in HPC tissue samples was evaluated by immunohistochemistry, and the relationship between PD-1/PD-L1 expression and prognosis was investigated with patient specimens. Results PD-1 expression was significantly upregulated on CD8+ T cells in tumor tissues compared with those in normal tissues. The overall survival (OS) and disease-free survival (DFS) of PD-1-overexpressing patients were decreased. Serum exosomes from patients can elevate PD-1 expression on CD8+ T cells and suppress their killing capacity and secretory function. The rate of positive PD-L1 expression was increased in HPC tissues compared with paracancerous tissues. The DFS and OS of the PD-1(+)-PD-L1(+) group were significantly lower than those of the PD-1(−)-PD-L1(−) group. Conclusion Our findings indicate that serum exosomes from HPC patients can inhibit CD8+ T cell function and that the PD-1-PD-L1 pathway plays an important role in the immune escape of HPC. Exosomes combined with immunotherapy may guide the treatment of patients with advanced disease in the future.


2006 ◽  
Vol 5 (2) ◽  
pp. 23-34
Author(s):  
V. V. Novitsky ◽  
N. V. Ryazantseva ◽  
O. B. Zhoukova

The review analyses information from recent literature and results of the authors’ own investigations concerning imbalance of programmed cell death in forming chronic viral infection. Molecular mechanisms of apoptosis modulation of immune cells by persistent viruses are discussed in the article.


Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3247
Author(s):  
Lingxiao Ye ◽  
Zhengxin Zhu ◽  
Xiaochuan Chen ◽  
Haoran Zhang ◽  
Jiaqi Huang ◽  
...  

Binding of programmed cell death ligand 1 (PD-L1) to its receptor programmed cell death protein 1 (PD-1) can lead to the inactivation of cytotoxic T lymphocytes, which is one of the mechanisms for immune escape of tumors. Immunotherapy based on this mechanism has been applied in clinic with some remaining issues such as drug resistance. Exosomal PD-L1 derived from tumor cells is considered to play a key role in mediating drug resistance. Here, the effects of various tumor-derived exosomes and tumor-derived exosomal PD-L1 on tumor progression are summarized and discussed. Researchers have found that high expression of exosomal PD-L1 can inhibit T cell activation in in vitro experiments, but the function of exosomal PD-L1 in vivo remains controversial. In addition, the circulating exosomal PD-L1 has high potential to act as an indicator to evaluate the clinical effect. Moreover, therapeutic strategy targeting exosomal PD-L1 is discussed, such as inhibiting the biogenesis or secretion of exosomes. Besides, some specific methods based on the strategy of inhibiting exosomes are concluded. Further study of exosomal PD-L1 may provide an effective and safe approach for tumor treatment, and targeting exosomal PD-L1 by inhibiting exosomes may be a potential method for tumor treatment.


Cancers ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 450 ◽  
Author(s):  
Saeed Daneshmandi ◽  
Barbara Wegiel ◽  
Pankaj Seth

Immunotherapy is a curable treatment for certain cancers, but it is still only effective in a small subset of patients. We have recently reported that programmed cell death protein-1 (PD-1) ligand (PD-L1) expression is regulated by lactate present at high levels in the tumor microenvironment (TME). We hypothesized that the efficacy of anti-PD-1 treatment can be improved by blocking the lactate-generating enzyme, lactate dehydrogenase-A (LDH-A). Anti-PD-1 treatment of mice harboring LDH-A deficient B16-F10 melanoma tumors led to an increase in anti-tumor immune responses compared to mice implanted with tumors expressing LDH-A. Specifically, we observed heightened infiltration of natural killer (NK) cells and CD8+ cytotoxic T cells in the LDH-A deficient tumors. These infiltrated cytotoxic cells had an elevated production of interferon-γ (IFN-γ) and granzyme B. Mechanistically, CD8+ T cells isolated from the TME of LDH-A deficient B16-F10 melanoma tumors and treated with anti-PD-1 showed enhanced mitochondrial activity and increased reactive oxygen species (ROS) levels. Moreover, infiltration of T regulatory (Treg) cells was diminished in LDH-A deficient tumors treated with anti-PD-1. These altered immune cell profiles were clinically relevant as they were accompanied by significantly reduced tumor growth. Our study suggests that blocking LDH-A in the tumor might improve the efficacy of anti-PD-1 therapy.


Sign in / Sign up

Export Citation Format

Share Document