scholarly journals Sargahydroquinoic Acid in Sargassum Serratifolium Activates Lipid Catabolic Pathways in 3T3-L1 Preadipocytes by Inducing White Adipocyte Browning (P06-108-19)

2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Misung Kwon ◽  
Bonggi Lee ◽  
Seung-Jin Jeong ◽  
Su-Jin Lim ◽  
Jae Sue Choi ◽  
...  

Abstract Objectives Sargassum serratifolium, a marine brown alga consumed in Asian countries, has shown anti-obesity effect by stimulating white adipose tissue browning. Therefore, the purpose of this study was to investigate lipid catabolic effects of sargahydroquinoic acid (SHQA), which is one of the major bioactive compounds of S. serratifolium by white adipocyte browning effect. Methods Isolated and purified SHQA from S. serratifolium was used to treat 3T3-L1 preadipocytes to see the effects of lipid catabolism and white adipocyte browning. Glycerol concentration measurement, Oil Red O lipid staining, and triglyceride quantification were conducted to examine the lipid catabolism by SHQA in the 3T3-L1 cells. In addition, real-time PCR and Western Blot assays were used to examine the expressions of genes related with lipid catabolic pathway, mitochondria biogenesis and white adipocyte browning. Results SHQA significantly upregulated non-shivering thermogenic gene expressions in 3T3-L1 cells including uncoupling protein 1, peroxisome proliferator-activated receptor γ and PR domain containing 16. SHQA also notably reduced cellular lipid accumulation. Interestingly, peroxisome proliferator-activated receptor (PPAR)γ, which is involved in lipid uptake and adipogenesis was upregulated by SHQA treatment. However, Western Blotting and protein-ligand docking simulation revealed that SHQA activates not only PPARγ but also PPARα and AMP-activated protein kinase (AMPK) α, which are lipid-catabolic proteins. In addition, SHQA treatment markedly elevated lipolysis and the amounts of mitochondria in 3T3-L1 cells. Conclusions Our results indicate that SHQA may combat obesity and associated metabolic syndromes through lipid catabolic pathways, mitochondria biogenesis and adipocyte browning by activating PPARγ, PPARα, and AMPKα pathways. Funding Sources This study was a part of the project, “Development of functional food products with natural materials derived from marine resources” funded by the Ministry of Oceans and Fisheries, Republic of Korea.

Endocrinology ◽  
2005 ◽  
Vol 146 (1) ◽  
pp. 375-382 ◽  
Author(s):  
Sandrine Gremlich ◽  
Christopher Nolan ◽  
Raphaël Roduit ◽  
Rémy Burcelin ◽  
Marie-Line Peyot ◽  
...  

The cellular response to fasting and starvation in tissues such as heart, skeletal muscle, and liver requires peroxisome proliferator-activated receptor-α (PPARα)-dependent up-regulation of energy metabolism toward fatty acid oxidation (FAO). PPARα null (PPARαKO) mice develop hyperinsulinemic hypoglycemia in the fasting state, and we previously showed that PPARα expression is increased in islets at low glucose. On this basis, we hypothesized that enhanced PPARα expression and FAO, via depletion of lipid-signaling molecule(s) for insulin exocytosis, are also involved in the normal adaptive response of the islet to fasting. Fasted PPARαKO mice compared with wild-type mice had supranormal ip glucose tolerance due to increased plasma insulin levels. Isolated islets from the PPARα null mice had a 44% reduction in FAO, normal glucose use and oxidation, and enhanced glucose-induced insulin secretion. In normal rats, fasting for 24 h increased islet PPARα, carnitine palmitoyltransferase 1, and uncoupling protein-2 mRNA expression by 60%, 62%, and 82%, respectively. The data are consistent with the view that PPARα, via transcriptionally up-regulating islet FAO, can reduce insulin secretion, and that this mechanism is involved in the normal physiological response of the pancreatic islet to fasting such that hypoglycemia is avoided.


2021 ◽  
Vol 49 (11) ◽  
pp. 030006052110550
Author(s):  
Xing Wang ◽  
Shuchun Chen ◽  
Dan Lv ◽  
Zelin Li ◽  
Luping Ren ◽  
...  

Objective To investigate the effect of liraglutide on the browning of white fat and the suppression of obesity via regulating microRNA (miR)-27b in vivo and in vitro. Methods Sprague-Dawley rats were fed a high-fat (HF) diet and 3T3-L1 pre-adipocytes were differentiated into mature white adipocytes. Rats and mature adipocytes were then treated with different doses of liraglutide. The mRNA and protein levels of browning-associated proteins, including uncoupling protein 1 (UCP1), PR domain containing 16 (PRDM16), CCAAT enhancer binding protein β (CEBPβ), cell death-inducing DFFA-like effector A (CIDEA) and peroxisome proliferator-activated receptor-γ-coactivator 1α (PGC-1α), were detected using quantitative real-time polymerase chain reaction and Western blotting. Results Liraglutide decreased body weight and reduced the levels of blood glucose, triglyceride and low-density lipoprotein cholesterol in HF diet-fed rats. Liraglutide increased the levels of UCP1, PRDM16, CEBPβ, CIDEA and PGC-1α in vivo and vitro. The levels of miR-27b were upregulated in HF diet-fed rats, whereas liraglutide reduced the levels of miR-27b. In vitro, overexpression of miR-27b decreased the mRNA and protein levels of UCP1, PRDM16, CEBPβ, CIDEA and PGC-1α. Transfection with the miR-27b mimics attenuated the effect of liraglutide on the browning of white adipocytes. Conclusion Liraglutide induced browning of white adipose through regulation of miR-27b.


Endocrinology ◽  
2005 ◽  
Vol 146 (8) ◽  
pp. 3266-3276 ◽  
Author(s):  
Kim Ravnskjaer ◽  
Michael Boergesen ◽  
Blanca Rubi ◽  
Jan K. Larsen ◽  
Tina Nielsen ◽  
...  

Abstract Fatty acids (FAs) are known to be important regulators of insulin secretion from pancreatic β-cells. FA-coenzyme A esters have been shown to directly stimulate the secretion process, whereas long-term exposure of β-cells to FAs compromises glucose-stimulated insulin secretion (GSIS) by mechanisms unknown to date. It has been speculated that some of these long-term effects are mediated by members of the peroxisome proliferator-activated receptor (PPAR) family via an induction of uncoupling protein-2 (UCP2). In this study we show that adenoviral coexpression of PPARα and retinoid X receptor α (RXRα) in INS-1E β-cells synergistically and in a dose- and ligand-dependent manner increases the expression of known PPARα target genes and enhances FA uptake and β-oxidation. In contrast, ectopic expression of PPARγ/RXRα increases FA uptake and deposition as triacylglycerides. Although the expression of PPARα/RXRα leads to the induction of UCP2 mRNA and protein, this is not accompanied by reduced hyperpolarization of the mitochondrial membrane, indicating that under these conditions, increased UCP2 expression is insufficient for dissipation of the mitochondrial proton gradient. Importantly, whereas expression of PPARγ/RXRα attenuates GSIS, the expression of PPARα/RXRα potentiates GSIS in rat islets and INS-1E cells without affecting the mitochondrial membrane potential. These results show a strong subtype specificity of the two PPAR subtypes α and γ on lipid partitioning and insulin secretion when systematically compared in a β-cell context.


Cells ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 2433
Author(s):  
Cécilia Colson ◽  
Pierre-Louis Batrow ◽  
Nadine Gautier ◽  
Nathalie Rochet ◽  
Gérard Ailhaud ◽  
...  

Thermogenic brown and brite adipocytes convert chemical energy from nutrients into heat. Therapeutics that regulate brown adipocyte recruitment and activity represent interesting strategies to control fat mass such as in obesity or cachexia. The peroxisome proliferator-activated receptor (PPAR) family plays key roles in the maintenance of adipose tissue and in the regulation of thermogenic activity. Activation of these receptors induce browning of white adipocyte. The purpose of this work was to characterize the role of carnosic acid (CA), a compound used in traditional medicine, in the control of brown/brite adipocyte formation and function. We used human multipotent adipose-derived stem (hMADS) cells differentiated into white or brite adipocytes. The expression of key marker genes was determined using RT-qPCR and western blotting. We show here that CA inhibits the browning of white adipocytes and favors decreased gene expression of thermogenic markers. CA treatment does not affect β-adrenergic response. Importantly, the effects of CA are fully reversible. We used transactivation assays to show that CA has a PPARα/γ antagonistic action. Our data pinpoint CA as a drug able to control PPAR activity through an antagonistic effect. These observations shed some light on the development of natural PPAR antagonists and their potential effects on thermogenic response.


Nutrients ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2851
Author(s):  
Papawee Saiki ◽  
Yasuhiro Kawano ◽  
Takayuki Ogi ◽  
Prapaipat Klungsupya ◽  
Thanchanok Muangman ◽  
...  

Gymnema inodorum (GI) is an indigenous medicinal plant and functional food in Thailand that has recently helped to reduce plasma glucose levels in healthy humans. It is renowned for the medicinal properties of gymnemic acid and its ability to suppress glucose absorption. However, the effects of gymnemic acids on adipogenesis that contribute to the accumulation of adipose tissues associated with obesity remain unknown. The present study aimed to determine the effects of gymnemic acids derived from GI tea on adipogenesis. We purified and identified GiA-7 and stephanosides C and B from GI tea that inhibited adipocyte differentiation in 3T3-L1 cells. These compounds also suppressed the expression of peroxisome proliferator-activated receptor gamma (Pparγ)-dependent genes, indicating that they inhibit lipid accumulation and the early stage of 3T3-L1 preadipocyte differentiation. Only GiA-7 induced the expression of uncoupling protein 1 (Ucp1) and pparγ coactivator 1 alpha (Pgc1α), suggesting that GiA-7 induces mitochondrial activity and beige-like adipocytes. This is the first finding of stephanosides C and B in Gymnema inodorum. Our results suggested that GiA-7 and stephanosides C and B from GI tea could help to prevent obesity.


2017 ◽  
Vol 58 (2) ◽  
pp. 57-66 ◽  
Author(s):  
Rose Kohlie ◽  
Nina Perwitz ◽  
Julia Resch ◽  
Sebastian M Schmid ◽  
Hendrik Lehnert ◽  
...  

Brown adipose tissue (BAT) is key to energy homeostasis. By virtue of its thermogenic potential, it may dissipate excessive energy, regulate body weight and increase insulin sensitivity. Catecholamines are critically involved in the regulation of BAT thermogenesis, yet research has focussed on the effects of noradrenaline and adrenaline. Some evidence suggests a role of dopamine (DA) in BAT thermogenesis, but the cellular mechanisms involved have not been addressed. We employed our extensively characterised murine brown adipocyte cells. D1-like and D2-like receptors were detectable at the protein level. Stimulation with DA caused an increase in cAMP concentrations. Oxygen consumption rates (OCR), mitochondrial membrane potential (Δψm) and uncoupling protein 1 (UCP1) levels increased after 24 h of treatment with either DA or a D1-like specific receptor agonist. A D1-like receptor antagonist abolished the DA-mediated effect on OCR, Δψm and UCP1. DA induced the release of fatty acids, which did not additionally alter DA-mediated increases of OCR. Mitochondrial mass (as determined by (i) CCCP- and oligomycin-mediated effects on OCR and (ii) immunoblot analysis of mitochondrial proteins) also increased within 24 h. This was accompanied by an increase in peroxisome proliferator-activated receptor gamma co-activator 1 alpha protein levels. Also, DA caused an increase in p38 MAPK phosphorylation and pharmacological inhibition of p38 MAPK abolished the DA-mediated effect on Δψm. In summary, our study is the first to reveal direct D1-like receptor and p38 MAPK-mediated increases of thermogenesis and mitochondrial mass in brown adipocytes. These results expand our understanding of catecholaminergic effects on BAT thermogenesis.


Molecules ◽  
2020 ◽  
Vol 25 (7) ◽  
pp. 1490
Author(s):  
Yanxiong Huo ◽  
Xuhong Lu ◽  
Xiaoyu Wang ◽  
Xifan Wang ◽  
Lingli Chen ◽  
...  

Probiotics are widely known for their health benefits. Mitochondrial dysfunction is related to obesity. The aim of this study was to illuminate whether Bifidobacterium animalis subsp. lactis A6 (BAA6) could improve obesity due to increased mitochondrial biogenesis and function of adipose tissues. Four-week-old male C57BL/6 mice were fed with a high-fat diet (HFD) for 17 weeks. For the final eight weeks, the HFD group was divided into three groups including HFD, HFD with BAA6 (HFD + BAA6 group), and HFD with Akkermansia muciniphila (AKK) (HFD + AKK group as positive control). The composition of the microbiota, serum lipopolysaccharides (LPS), and mitochondrial biosynthesis and function of epididymal adipose tissues were measured. Compared with the HFD group, body weight, relative fat weight, the relative abundance of Oscillibacter and Bilophila, and serum LPS were significantly decreased in the HFD + BAA6 and HFD + AKK groups (p < 0.05). Furthermore, the addition of BAA6 and AKK increased the expression of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) (by 21.53- and 18.51-fold), estrogen-related receptor α (ERRα) (by 2.83- and 1.24-fold), and uncoupling protein-1 (UCP-1) (by 1.51- and 0.60-fold) in epididymal adipose tissues. Our results suggest that BAA6 could improve obesity associated with promoting mitochondrial biogenesis and function of adipose tissues in mice.


Sign in / Sign up

Export Citation Format

Share Document