scholarly journals A Genetic Screen for Novel Components of the Ras/Mitogen-Activated Protein Kinase Signaling Pathway That Interact With the yan Gene of Drosophila Identifies split ends, a New RNA Recognition Motif-Containing Protein

Genetics ◽  
2000 ◽  
Vol 154 (2) ◽  
pp. 695-712 ◽  
Author(s):  
Ilaria Rebay ◽  
Fangli Chen ◽  
Francis Hsiao ◽  
Peter A Kolodziej ◽  
Bing H Kuang ◽  
...  

Abstract The receptor tyrosine kinase (RTK) signaling pathway is used reiteratively during the development of all multicellular organisms. While the core RTK/Ras/MAPK signaling cassette has been studied extensively, little is known about the nature of the downstream targets of the pathway or how these effectors regulate the specificity of cellular responses. Drosophila yan is one of a few downstream components identified to date, functioning as an antagonist of the RTK/Ras/MAPK pathway. Previously, we have shown that ectopic expression of a constitutively active protein (yanACT) inhibits the differentiation of multiple cell types. In an effort to identify new genes functioning downstream in the Ras/MAPK/yan pathway, we have performed a genetic screen to isolate dominant modifiers of the rough eye phenotype associated with eye-specific expression of yanACT. Approximately 190,000 mutagenized flies were screened, and 260 enhancers and 90 suppressors were obtained. Among the previously known genes we recovered are four RTK pathway components, rolled (MAPK), son-of-sevenless, Star, and pointed, and two genes, eyes absent and string, that have not been implicated previously in RTK signaling events. We also isolated mutations in five previously uncharacterized genes, one of which, split ends, we have characterized molecularly and have shown to encode a member of the RRM family of RNA-binding proteins.

Author(s):  
Ayano Tsuru ◽  
Yumi Hamazaki ◽  
Shuta Tomida ◽  
Mohammad Shaokat Ali ◽  
Eriko Kage-Nakadai

Abstract Cutibacterium acnes plays roles in both acne disease and healthy skin ecosystem. We observed that mutations in the tir-1/SARM1 and p38 MAPK cascade genes significantly shortened Caenorhabditis elegans lifespan upon Cutibacterium acnes SK137 infection. Antimicrobial molecules were induced by SK137 in a TIR-1-dependent manner. These results suggest that defense responses against SK137 involve the TIR-1-p38 MAPK pathway in Caenorhabditis elegans.


2016 ◽  
Vol 39 (6) ◽  
pp. 2216-2226 ◽  
Author(s):  
Pei Li ◽  
Yuan Xu ◽  
Yibo Gan ◽  
Liyuan Wang ◽  
Bin Ouyang ◽  
...  

Background/Aims: Matrix homeostasis within the disc nucleus pulposus (NP) tissue is important for disc function. Increasing evidence indicates that sex hormone can influence the severity of disc degeneration. This study was aimed to study the role of 17β-estradiol (E2) in NP matrix synthesis and its underlying mechanism. Methods: Rat NP cells were cultured with (10-5, 10-7 and 10-9 M) or without (control) E2 for48 hours. The estrogen receptor (ER)-β antagonist PHTPP and ERβ agonist ERB 041 were used to investigate the role mediated by ERβ. The p38 MAPK inhibitor SB203580 was used to investigate the role of p38 MAPK signaling pathway. Gene and protein expression of SOX9, aggrecan and collagen II, glycosaminoglycan (GAG) content, and immunostaining assay for aggrecan and collagen II were analyzed to evaluate matrix production in rat NP cells. Results: E2 enhanced NP matrix synthesis in a concentration-dependent manner regarding gene and proetin expression of SOX9, aggrecan and collagen II, protein deposition of aggrecan and collagen II, and GAG content. Moreover, activation of p38 MAPK signaling pathway was increased with elevating E2 concentration. Further analysis indicated that ERB 041 and PHTPP could respectively enhance and suppress effects of E2 on matrix synthesis in NP cells, as well as activation of p38 MAPK pathway. Additionally, inhibition of p38 MAPK signaling pathway significantly abolished the effects of E2 on matrix synthesis. Conclusion: E2 can enhance matrix synthesis of NP cells and the ERβ/p38 MAPK pathway is involved in this regulatory process.


Author(s):  
Shan Lei ◽  
Zhiwei He ◽  
Tengxiang Chen ◽  
Xingjun Guo ◽  
Zhirui Zeng ◽  
...  

Abstract Background Accumulation evidence indicates the vital role of long non-coding RNAs (lncRNAs) in tumorigenesis and the progression of malignant tumors, including pancreatic cancer (PC). However, the role and the molecular mechanism of long non-coding RNA 00976 is unclear in pancreatic cancer. Methods In situ hybridization (ISH) and qRT-PCR was performed to investigate the association between linc00976 expression and the clinicopathological characteristics and prognosis of patients with PC. Subsequently, linc00976 over-expression vector and shRNAs were transfected into PC cells to up-regulate or down-regulate linc00976 expression. Loss- and gain-of function assays were performed to investigate the role of linc00976 in proliferation and metastasis in vitro and vivo. ITRAQ, bioinformatic analysis and rescue assay were used to illustrate the ceRNA mechanism network of linc00976/miR-137/OTUD7B and its downstream EGFR/MAPK signaling pathway. Results linc00976 expression was overexpressed in PC tissues and cell lines and was positively associated with poorer survival in patients with PC. Function studies revealed that linc00976 knockdown significantly suppressed cell proliferation, migration and invasion in vivo and in vitro, whereas its overexpression reversed these effects. Based on Itraq results and online database prediction, Ovarian tumor proteases OTUD7B was found as a downstream gene of linc00976, which deubiquitinated EGFR mediates MAPK signaling activation. Furthermore, Bioinformatics analysis and luciferase assays and rescue experiments revealed that linc00976/miR137/OTUD7B established the ceRNA network modulating PC cell proliferation and tumor growth. Conclusion The present study demonstrates that linc00976 enhances the proliferation and invasion ability of PC cells by upregulating OTUD7B expression, which was a target of miR-137. Ultimately, OTUD7B mediates EGFR and MAPK signaling pathway, suggesting that linc00976/miR-137/OTUD7B/EGFR axis may act as a potential biomarker and therapeutic target for PC.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1975-1975
Author(s):  
Vijay P.S. Rawat ◽  
Vegi M. Naidu ◽  
Christina Schessl ◽  
Monica Cusan ◽  
R.Keith Humphries ◽  
...  

Abstract In AML the translocation t(12;13)(p13;q12) results in the ectopic expression of the homeobox gene Cdx2 and the expression of the ETV6-CDX2 fusion. We have recently shown that myeloid leukemogenesis is induced by the ectopic expression of the proto-oncogene Cdx2 and not by the ETV6-CDX2 fusion gene in a murine model of t(12;13) AML. To characterize the contribution of different Cdx2 motifs to the transforming capacity of the gene we generated different mutants, inactivating the DNA binding homeodomain (N51S-Cdx2), or the PBX1-interacting motif (W167A-Cdx2), or deleting the N-terminal portion of Cdx2 (N-Cdx2). Expression of Cdx2 and the different mutants were induced in primary murine bone marrow cells by retroviral gene transfer, using an MSCV based retroviral construct with an IRES-YFP cassette. Expression of Cdx2 and the W167A-Cdx2 mutant significantly increased primary colony formation (3-fold) (n=3;p<0.001) with a higher number of CFU-G/GM colonies (p<0.015). Furthermore, both constructs enhanced the replating capacity of clonogenic progenitors with an 80-100fold increase in secondary colonies (p<0.005). In addition, both constructs induced the outgrowth of blast colonies (2700fold; p<0.02). In contrast, cells transduced with N51S-Cdx2 and N-Cdx2 lost their clonogenic potential after replating. In vivo all mice transplanted with cells expressing Cdx2 or the W167A-Cdx2 mutant developed transplantable AML. However, in Cdx2 leukemic mice > 90% of the cells co-expressed Gr-1+ and Mac1+, whereas in W167A mice 40% of the leukemic population were Gr-1+ only. The N51S mutant induced a distinct leukemia phenotype with 90 % Gr-1+/c-Kit+. We extended structure-function analyses, inactivating the phosphorylation site (S60) in the Cdx2 transactivation domain, previously shown to be regulated by the MAPK family. We confirmed that oncogenic Cdx2 is phophorylated at the N-terminal in primary BM cells by Western blotting using a P-Cdx2-S60 specific antibody. S60 position mutation slightly reduced the hematopoietic activity of wild-type Cdx2. Incubation with the MEK1 inhibitor PD98059 inhibited phosphorylation, decreased the frequency of CFU-S 8fold (n=7; p<0.001) and blocked growth of leukemic Cdx2 transfected blasts in vitro. In contrast, the p38 inhibitor SB2059 did not prevent phosphorylation and was unable to antagonize Cdx2 induced transformation. These data demonstrate that the transforming activity of Cdx2 and the phenotype of Cdx2 induced leukemias is depending on the functional integrity of distinct Cdx2 domains. Furthermore, our data link the oncogenic potential of Cdx2 directly to the MAPK signaling, opening the possibility to counteract Cdx2 associated leukemogenesis by kinase inhibitors.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2786-2786
Author(s):  
Xiaomei Chen ◽  
Wei Xiong ◽  
Fang Liu ◽  
Shiang Huang ◽  
Sun Yanqing ◽  
...  

Abstract Abstract 2786 Leukemia-cell-derived microvesicles (MVs) act as vehicles for exchange of genetic information between leukemia and nomal cells, engendering a favorable microenvironment for leukemia development. Within the leukemia mass, all cell types may contribute to MV shedding, but specific contributions to tumor progression have yet to be established. MVs contain microRNAs that could be transferred to target cells inducing epigenetic changes. MicroRNAs are short non-coding regulatory RNAs that control gene expression and play an important role in cancer development and progression. However, little is known about the role of miRNAs in chronic myeloid leukemia (CML)-derived MVs. Given the attributes of MVs and microRNAs in leukemia progression, we therefore aimed to investigate a possible regulatory effect of microRNAs upon MVs as a mean to uncover molecular events involved in promotion of leukemogenesis by MVs. Hnece, we determined the miRNA expression profiles of CML-derived MVs and their parental cells using Agilent miRNA microarray analysis. The six miRNAs obtained by microarray profiling were validated using real-time PCR. The potential targets of the differentially expressed microRNAs were predicted using computational searches. Bioinformatic analyses of the predicted target genes were done for further research. We identified 104 microRNAs aberrantly expressed in both CML-derived MVs and their parental cells, indicating that CML-derived MVs miRNA is the mini version of the parental cells. Target gene-related pathway analyses showed that majority of the 104 microRNAs involved in the signaling pathways associated with leukemia, especially the mitogen-activated protein kinase (MAPK) signaling pathways. We found 34 microRNAs targeted 44 genes of the MAKP pathway, suggesting that the MAPK signaling pathway may commonly function together. By further conducting microRNA gene network analysis, we found that the miR-15a/b, miR-16, miR-17and miR-30 families are likely to play key roles in the regulation of MAPK pathways. The figure showed microRNA-gene interaction networks related to the pathway. The has-miR-30 family (except for hsa-miR-30a hsa-miR-30d) showed that the most target mRNAs, with degrees from 6 to 9, while hsa-miR-17, hsa-miR-16 and hsa-miR-15a/b occupy an important position in the MAPK pathway. The seven microRNAs might play an important role in the pathogenesis of CML. The MAPK pathway is a common point of convergence of many different mitogenic and anti-apoptotic signal transduction pathways in hematopoietic, as well as epithelial, cancer cells and can now be clinically targeted by highly selective small molecule inhibitors. Such deregulation of MAPK pathways contributes to BCR-ABL leukemogenesis, and their targeting with selective inhibitors provides an approach to enhance anti-leukemic responses and/or overcome leukemic cell resistance in CML. A large body of evidence has established that RAS/MAPK signaling contribute to the survival of BCR-ABL positive cells under imatinib selection pressure. It is evident that release of microRNAs from the lumen of MVs can induce activation of specific signal transduction cascades and influence the physiologic state of recipient cells. So the MVs derived from leukemia cells may weaken or enhance the expression of mRNA involved in MAPK pathway in recipient cells, and come to remodel the leukemia niche. In conclusion, we first demonstrated that CML-MVs were enriched with expression changes of distinct sets of miRNAs regulating MAPK sinaling pathway. MAPK sinaling pathway were active in CML-MVs and may commonly function together. We believe that this new correlation among MVs, microRNAs and MAPK pathway can be exploited to both better understand leukemia progression and also suggest novel therapies for leukemias. Fig 1. microRNA-gene interaction networks of MAPK pathway. Blue nodes represent microRNA co-eppressed in MVs from K562 cells and K562 cells, red nodes represent target mRNA. Edges show the regulatory effect of microRNA on mRNA. Fig 1. microRNA-gene interaction networks of MAPK pathway. Blue nodes represent microRNA co-eppressed in MVs from K562 cells and K562 cells, red nodes represent target mRNA. Edges show the regulatory effect of microRNA on mRNA. Disclosures: No relevant conflicts of interest to declare.


2006 ◽  
Vol 11 (4) ◽  
pp. 423-434 ◽  
Author(s):  
Charlotta Grånäs ◽  
Betina Kerstin Lundholt ◽  
Frosty Loechel ◽  
Hans-Christian Pedersen ◽  
Sara Petersen Bjørn ◽  
...  

The RAS-mitogen-activated protein kinase (MAPK) signaling pathway has a central role in regulating the proliferation and survival of both normal and tumor cells. This pathway has been 1 focus area for the development of anticancer drugs, resulting in several compounds, primarily kinase inhibitors, in clinical testing. The authors have undertaken a cell-based, high-throughput screen using a novel ERF1 Redistribution® assay to identify compounds that modulate the signaling pathway. The hit compounds were subsequently tested for activity in a functional cell proliferation assay designed to selectively detect compounds inhibiting the proliferation of MAPK pathway-dependent cancer cells. The authors report the identification of 2 cell membrane-permeable compounds that exhibit activity in the ERF1 Redistribution® assay and selectively inhibit proliferation of MAPK pathway-dependent malignant melanoma cells at similar potencies (IC50 =< 5 μM). These compounds have drug-like structures and are negative in RAF, MEK, and ERK in vitro kinase assays. Drugs belonging to these compound classes may prove useful for treating cancers caused by excessive MAPK pathway signaling. The results also show that cell-based, high-content Redistribution® screens can detect compounds with different modes of action and reveal novel targets in a pathway known to be disease relevant.


2015 ◽  
Vol 112 (45) ◽  
pp. 13916-13921 ◽  
Author(s):  
Linda Fabris ◽  
Stefania Berton ◽  
Ilenia Pellizzari ◽  
Ilenia Segatto ◽  
Sara D’Andrea ◽  
...  

The cyclin-dependent kinase (CDK) inhibitor p27kip1 is a critical regulator of the G1/S-phase transition of the cell cycle and also regulates microtubule (MT) stability. This latter function is exerted by modulating the activity of stathmin, an MT-destabilizing protein, and by direct binding to MTs. We recently demonstrated that increased proliferation in p27kip1-null mice is reverted by concomitant deletion of stathmin in p27kip1/stathmin double-KO mice, suggesting that a CDK-independent function of p27kip1 contributes to the control of cell proliferation. Whether the regulation of MT stability by p27kip1 impinges on signaling pathway activation and contributes to the decision to enter the cell cycle is largely unknown. Here, we report that faster cell cycle entry of p27kip1-null cells was impaired by the concomitant deletion of stathmin. Using gene expression profiling coupled with bioinformatic analyses, we show that p27kip1 and stathmin conjunctly control activation of the MAPK pathway. From a molecular point of view, we observed that p27kip1, by controlling MT stability, impinges on H-Ras trafficking and ubiquitination levels, eventually restraining its full activation. Our study identifies a regulatory axis controlling the G1/S-phase transition, relying on the regulation of MT stability by p27kip1 and finely controlling the spatiotemporal activation of the Ras-MAPK signaling pathway.


2021 ◽  
Vol 11 ◽  
Author(s):  
Jie Zhang ◽  
Pinping Jiang ◽  
Shoyu Wang ◽  
Wenjun Cheng ◽  
Shilong Fu

Aims: A growing number of studies have unveiled that long non-coding RNA (lncRNA) is conductive to cervical cancer (CC) development. However, the effect of LIPE-AS1 is remained to be studied in CC.Main Methods: Reverse transcription-polymerase chain reaction (RT-PCR) was employed to measure LIPE-AS1 expression in CC tissues and the adjacent normal tissues. Additionally, we conducted gain- and loss-of functional experiments of LIPE-AS1 and adopted CCK8 assay, BrdU assay, and in vivo tumor formation experiment to test the proliferation of CC cells (HCC94 and HeLa). Besides, the apoptosis, invasion, and epithelial-mesenchymal transformation (EMT) of CC cells were estimated using flow cytometry, transwell assay, and western blot, respectively. Further, LIPE-AS1 downstream targets were analyzed through bioinformatics, and the binding relationships between LIPE-AS1 and miR-195-5p were verified via dual-luciferase activity experiment and RNA Protein Immunoprecipitation (RIP) assay. Moreover, rescue experiments were conducted to confirm the effects of LIPE-AS1 and miR-195-5p in regulating CC development and the expressions of MAPK signaling pathway related proteins were detected by RT-PCR, western blot, and immunofluorescence.Key Findings: LIPE-AS1 was over-expressed in CC tissues (compared to normal adjacent tissues) and was notably related to tumor volume, distant metastasis. Overexpressing LIPE-AS1 accelerated CC cell proliferation, migration and EMT, inhibited apoptosis; while LIPE-AS1 knockdown had the opposite effects. The mechanism studies confirmed that LIPE-AS1 sponges miR-195-5p as a competitive endogenous RNA (ceRNA), which targets the 3′-untranslated region (3′-UTR) of MAP3K8. LIPE-AS1 promoted the expression of MAP3K8 and enhanced ERK1/2 phosphorylation, which were reversed by miR-195-5p.Significance: LIPE-AS1 regulates CC progression through the miR-195-5p/MAPK signaling pathway, providing new hope for CC diagnosis and treatment.


Author(s):  
Yu-Yan Zhao ◽  
Lin-Hui Chen ◽  
Liang Huang ◽  
Yong-Zhen Li ◽  
Chen Yang ◽  
...  

Cardiovascular and related metabolic diseases are significant global health challenges. Glucagon-like peptide 1 (GLP-1) is a brain-gut peptide secreted by ileal endocrine that is now an established drug target in type 2 diabetes (T2DM). GLP-1 targeting agents have been shown not only to treat T2DM, but also to exert cardiovascular protective effects through regulating multiple signaling pathways. The mitogen-activated protein kinase (MAPK) pathway, a common signal transduction pathway for transmitting extracellular signals to downstream effector molecules, is involved in regulating diverse cell physiological processes, including cell proliferation, differentiation, stress, inflammation, functional synchronization, transformation and apoptosis. The purpose of this review is to highlight the relationship between GLP-1 and cardiovascular disease (CVD), and discuss how GLP-1 exerts cardiovascular protective effects through MAPK signaling pathway. This review also discusses the future challenges in fully characterizing and evaluating the CVD protective effects of GLP-1 receptor agonists (GLP-1RA) at the cellular and molecular level. A better understanding of MAPK signaling pathway that are disregulated in CVD may aid in the design and development of promising GLP-1RA.


2019 ◽  
Author(s):  
Lei Li ◽  
Xiang-Hui Wu ◽  
Xiao-Jing Zhao ◽  
Lu Xu ◽  
Cai-Long Pan ◽  
...  

Abstract Background: Alzheimer’s disease (AD) is a major clinical problem, but there is a distinct lack of effective therapeutic drugs for this disease. We investigated the potential therapeutic effects of zerumbone, a subtropical ginger sesquiterpene, in transgenic APP/PS1 mice, rodent models of AD which exhibit cerebral amyloidosis and neuroinflammation. Methods: The N9 microglial cell line and primary microglial cells were cultured to investigate the effects of zerumbone on microglia. APP/PS1 mice were treated with zerumbone, and non-cognitive and cognitive behavioral impairments were assessed and compared between the treatment and control groups. The animals were then sacrificed, and tissues were collected for further analysis. The potential therapeutic mechanism of zerumbone and the signaling pathways involved were also investigated. Results: Zerumbone suppressed the expression of pro-inflammatory cytokines and induced a switch in microglial phenotype from the classic inflammatory phenotype to the alternative anti-inflammatory phenotype by inhibiting the mitogen-activated protein kinase (MAPK)/nuclear factor-kappa B signaling pathway in vitro. After a treatment period of 20 days, zerumbone significantly ameliorated deficits in both non-cognitive and cognitive behaviors in transgenic APP/PS1 mice. Zerumbone significantly reduced β-amyloid deposition and attenuated pro-inflammatory microglial activation in the cortex and hippocampus. Interestingly, zerumbone significantly increased the proportion of anti-inflammatory microglia among all activated microglia, potentially contributing to reduced β-amyloid deposition by enhancing phagocytosis. Meanwhile, zerumbone also reduced the expression of key molecules of the MAPK pathway, such as p38 and extracellular signal-regulated kinase. Conclusions: Overall, zerumbone effectively ameliorated behavioral impairments, attenuated neuroinflammation, and reduced β-amyloid deposition in transgenic APP/PS1 mice. Zerumbone exhibited substantial anti-inflammatory activity in microglial cells and induced a phenotypic switch in microglia from the pro-inflammatory phenotype to the anti-inflammatory phenotype by inhibiting the MAPK signaling pathway, which may play an important role in its neuroprotective effects. Our results suggest that zerumbone is a potential therapeutic agent for human neuroinflammatory and neurodegenerative diseases, in particular AD.


Sign in / Sign up

Export Citation Format

Share Document