scholarly journals A New Type of COP: The Role of Circulating Osteoprogenitor (COP) Cells in Health and Disease

2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. 44-45
Author(s):  
Gustavo Duque

Abstract Circulating osteogenic progenitor (COP) cells are a population of cells in the peripheral blood with the capacity for bone formation and broader differentiation into mesoderm-like cells in vitro. While some of their biological characteristics are documented in vitro, their role in the aging process and the pathogenesis of musculoskeletal diseases remains yet to be thoroughly evaluated. This translational session will go from bench to bedside, reviewing the current evidence on COP cells. In this session, we will provide an overview of the role of COP cells in the aging process and a number of physiological and pathological conditions and identify areas for future research. In addition, we will suggest possible areas for clinical utilization in the management of musculoskeletal diseases, which include novel diagnostic and therapeutic uses.

2017 ◽  
Vol 28 (6) ◽  
pp. 649-673 ◽  
Author(s):  
Ashutosh Kumar ◽  
Vikas Pareek ◽  
Muneeb A. Faiq ◽  
Pavan Kumar ◽  
Khursheed Raza ◽  
...  

AbstractNerve growth factors (NGFs), especially the prototype NGF and brain-derived neurotrophic factor (BDNF), have a diverse array of functions in the central nervous system through their peculiar set of receptors and intricate signaling. They are implicated not only in the development of the nervous system but also in regulation of neurocognitive functions like learning, memory, synaptic transmission, and plasticity. Evidence even suggests their role in continued neurogenesis and experience-dependent neural network remodeling in adult brain. They have also been associated extensively with brain disorders characterized by neurocognitive dysfunction. In the present article, we aimed to make an exhaustive review of literature to get a comprehensive view on the role of NGFs in neurocognitive functions in health and disease. Starting with historical perspective, distribution in adult brain, implied molecular mechanisms, and developmental basis, this article further provides a detailed account of NGFs’ role in specified neurocognitive functions. Furthermore, it discusses plausible NGF-based homeostatic and adaptation mechanisms operating in the pathogenesis of neurocognitive disorders and has presents a survey of such disorders. Finally, it elaborates on current evidence and future possibilities in therapeutic applications of NGFs with an emphasis on recent research updates in drug delivery mechanisms. Conclusive remarks of the article make a strong case for plausible role of NGFs in comprehensive regulation of the neurocognitive functions and pathogenesis of related disorders and advocate that future research should be directed to explore use of NGF-based mechanisms in the prevention of implicated diseases as well as to target these molecules pharmacologically.


2018 ◽  
Author(s):  
Lorraine Tudor Car ◽  
Bhone Myint Kyaw ◽  
Josip Car

BACKGROUND Digital technology called Virtual Reality (VR) is increasingly employed in health professions’ education. Yet, based on the current evidence, its use is narrowed around a few most applications and disciplines. There is a lack of an overview that would capture the diversity of different VR applications in health professions’ education and inform its use and research. OBJECTIVE This narrative review aims to explore different potential applications of VR in health professions’ education. METHODS The narrative synthesis approach to literature review was used to analyse the existing evidence. RESULTS We outline the role of VR features such as immersion, interactivity and feedback and explain the role of VR devices. Based on the type and scope of educational content VR can represent space, individuals, objects, structures or their combination. Application of VR in medical education encompasses environmental, organ and micro level. Environmental VR focuses on training in relation to health professionals’ environment and human interactions. Organ VR educational content targets primarily human body anatomy; and micro VR microscopic structures at the level of cells, molecules and atoms. We examine how different VR features and health professional education areas match these three VR types. CONCLUSIONS We conclude by highlighting the gaps in the literature and providing suggestions for future research.


Author(s):  
Maryann Feldman ◽  
Paige Clayton

This chapter examines the relationship between entrepreneurs and the communities in which they are embedded. It argues that the actions of entrepreneurs and their firms are contextually situated in specific geographies that make their actions endogenous in the development of place and define a place-specific institutional logic. This argument is at odds with the view that industry clustering is due to the role of incumbent firms. This chapter reconciles these views by adopting a temporal view, allowing both incumbents and geography to co-occur and influence clustering. It then considers the current evidence of entrepreneurs’ effects on regional resources and capacity, and concludes with suggestions for future research.


2021 ◽  
Vol 22 (12) ◽  
pp. 6403
Author(s):  
Md Saidur Rahman ◽  
Khandkar Shaharina Hossain ◽  
Sharnali Das ◽  
Sushmita Kundu ◽  
Elikanah Olusayo Adegoke ◽  
...  

Insulin is a polypeptide hormone mainly secreted by β cells in the islets of Langerhans of the pancreas. The hormone potentially coordinates with glucagon to modulate blood glucose levels; insulin acts via an anabolic pathway, while glucagon performs catabolic functions. Insulin regulates glucose levels in the bloodstream and induces glucose storage in the liver, muscles, and adipose tissue, resulting in overall weight gain. The modulation of a wide range of physiological processes by insulin makes its synthesis and levels critical in the onset and progression of several chronic diseases. Although clinical and basic research has made significant progress in understanding the role of insulin in several pathophysiological processes, many aspects of these functions have yet to be elucidated. This review provides an update on insulin secretion and regulation, and its physiological roles and functions in different organs and cells, and implications to overall health. We cast light on recent advances in insulin-signaling targeted therapies, the protective effects of insulin signaling activators against disease, and recommendations and directions for future research.


2016 ◽  
Vol 44 (04) ◽  
pp. 803-815 ◽  
Author(s):  
Lin Bai ◽  
Guiying Shi ◽  
Yajun Yang ◽  
Wei Chen ◽  
Lianfeng Zhang

Anti-aging has always been a popular topic, and there are many claims about the existence of factors that can slow, stop, or even reverse the aging process. Siraitia grosuenorii, a local fruit in china, has been used for the treatment of gastritis, sore throats, and whooping cough in traditional Chinese medicine. The individuals who took the juice of Siraitia grosuenorii regularly had increased longevity in the Guangxi Province, which is located in the Southern part of China. In this paper, we fed mice with Siraitia grosuenorii for 10 months to identify the role of Siraitia grosuenorii in anti-aging and to investigate its corresponding mechanism. The results showed that mice fed with Siraitia grosuenorii displayed a slower aging process. The extension of the aging process was due to the enhanced function of HSCs. FACS analysis showed that the number of LSKs, LT-HSCs, ST-HSCs and MPPs from Siraitia grosuenorii mice was decreased. In vitro, a clonigenic assay showed that LT-HSCs from Siraitia grosuenorii mice increased the ability of self-renewal. Moreover, Siraitia grosuenorii mice maintained the quiescence of LSKs, decreased the level of ROS and reduced the amount of senescence associated β-gal positive cells. Furthermore, Siraitia grosuenorii mice decreased the expression of senescence-associated proteins. Siraitia grosuenorii maintained quiescence, decreased senescence and enhanced the function of HSCs, slowing the aging process of mice.


2021 ◽  
pp. 1-13
Author(s):  
Jonas Folke ◽  
Sertan Arkan ◽  
Isak Martinsson ◽  
Susana Aznar ◽  
Gunnar Gouras ◽  
...  

Background: α-synuclein (α-syn) aggregation contributes to the progression of multiple neurodegenerative diseases. We recently found that the isoform b of the co-chaperone DNAJB6 is a strong suppressor of a-syn aggregation in vivo and in vitro. However, nothing is known about the role of the endogenous isoform b of DNAJB6 (DNAJB6b) in health and disease, due to lack of specific antibodies. Objective: Here we generated a novel anti-DNAJB6b antibody to analyze the localization and expression this isoform in cells, in tissue and in clinical material. Methods: To address this we used immunocytochemistry, immunohistochemistry, as well as a novel quantitative DNAJB6 specific ELISA method. Results: The endogenous protein is mainly expressed in the cytoplasm and in neurites in vitro, where it is found more in dendrites than in axons. We further verified in vivo that DNAJB6b is expressed in the dopaminergic neurons of the substantia nigra pars compacta (SNpc), which is a neuronal subpopulation highly sensitive to α-syn aggregation, that degenerate to a large extend in patients with Parkinson’s disease (PD) and multiple system atrophy (MSA). When we analyzed the expression levels of DNAJB6b in brain material from PD and MSA patients, we found a downregulation of DNAJB6b by use of ELISA based quantification. Interestingly, this was also true when analyzing tissue from patients with progressive supranuclear palsy, a taupathic atypical parkinsonian disorder. However, the total level of DNAJB6 was upregulated in these three diseases, which may indicate an upregulation of the other major isoform of DNAJB6, DNAJB6a. Conclusion: This study shows that DNAJB6b is downregulated in several different neurodegenerative diseases, which makes it an interesting target to further investigate in relation to amyloid protein aggregation and disease progression.


2021 ◽  
Vol 12 ◽  
Author(s):  
Diego Sanchez ◽  
Maria D. Ganfornina

Apolipoprotein D is a chordate gene early originated in the Lipocalin protein family. Among other features, regulation of its expression in a wide variety of disease conditions in humans, as apparently unrelated as neurodegeneration or breast cancer, have called for attention on this gene. Also, its presence in different tissues, from blood to brain, and different subcellular locations, from HDL lipoparticles to the interior of lysosomes or the surface of extracellular vesicles, poses an interesting challenge in deciphering its physiological function: Is ApoD a moonlighting protein, serving different roles in different cellular compartments, tissues, or organisms? Or does it have a unique biochemical mechanism of action that accounts for such apparently diverse roles in different physiological situations? To answer these questions, we have performed a systematic review of all primary publications where ApoD properties have been investigated in chordates. We conclude that ApoD ligand binding in the Lipocalin pocket, combined with an antioxidant activity performed at the rim of the pocket are properties sufficient to explain ApoD association with different lipid-based structures, where its physiological function is better described as lipid-management than by long-range lipid-transport. Controlling the redox state of these lipid structures in particular subcellular locations or extracellular structures, ApoD is able to modulate an enormous array of apparently diverse processes in the organism, both in health and disease. The new picture emerging from these data should help to put the physiological role of ApoD in new contexts and to inspire well-focused future research.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0245471
Author(s):  
Xin Yi Lim ◽  
Terence Yew Chin Tan ◽  
Siti Hajar Muhd Rosli ◽  
Muhammad Nor Farhan Sa’at ◽  
Syazwani Sirdar Ali ◽  
...  

Introduction Hemp (Cannabis sativa subsp. sativa), commonly used for industrial purposes, is now being consumed by the public for various health promoting effects. As popularity of hemp research and claims of beneficial effects rises, a systematic collection of current scientific evidence on hemp’s health effects and pharmacological properties is needed to guide future research, clinical, and policy decision making. Objective To provide an overview and identify the present landscape of hemp research topics, trends, and gaps. Methods A systematic search and analysis strategy according to the preferred reporting items for systematic review and meta-analysis-ScR (PRISMA-ScR) checklist on electronic databases including MEDLINE, OVID (OVFT, APC Journal Club, EBM Reviews), Cochrane Library Central and Clinicaltrials.gov was conducted to include and analyse hemp research articles from 2009 to 2019. Results 65 primary articles (18 clinical, 47 pre-clinical) were reviewed. Several randomised controlled trials showed hempseed pills (in Traditional Chinese Medicine formulation MaZiRenWan) improving spontaneous bowel movement in functional constipation. There was also evidence suggesting benefits in cannabis dependence, epilepsy, and anxiety disorders. Pre-clinically, hemp derivatives showed potential anti-oxidative, anti-hypertensive, anti-inflammatory, anti-diabetic, anti-neuroinflammatory, anti-arthritic, anti-acne, and anti-microbial activities. Renal protective effects and estrogenic properties were also exhibited in vitro. Conclusion Current evidence on hemp-specific interventions are still preliminary, with limited high quality clinical evidence for any specific therapeutic indication. This is mainly due to the wide variation in test item formulation, as the multiple variants of this plant differ in their phytochemical and bioactive compounds. Future empirical research should focus on standardising the hemp plant for pharmaceutical use, and uniformity in experimental designs to strengthen the premise of using hemp in medicine.


Nutrients ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 3402
Author(s):  
Barbara Borsani ◽  
Raffaella De Santis ◽  
Veronica Perico ◽  
Francesca Penagini ◽  
Erica Pendezza ◽  
...  

Carrageenan (CGN) is a high molecular weight polysaccharide extracted from red seaweeds, composed of D-galactose residues linked in β-1,4 and α-1,3 galactose-galactose bond, widely used as a food additive in processed foods for its properties as a thickener, gelling agent, emulsifier, and stabilizer. In recent years, with the spread of the Western diet (WD), its consumption has increased. Nonetheless, there is a debate on its safety. CGN is extensively used as an inflammatory and adjuvant agent in vitro and in animal experimental models for the investigation of immune processes or to assess the activity of anti-inflammatory drugs. CGN can activate the innate immune pathways of inflammation, alter the gut microbiota composition and the thickness of the mucus barrier. Clinical evidence suggests that CGN is involved in the pathogenesis and clinical management of inflammatory bowel diseases (IBD), indeed food-exclusion diets can be an effective therapy for disease remission. Moreover, specific IgE to the oligosaccharide α-Gal has been associated with allergic reactions commonly referred to as the “α-Gal syndrome”. This review aims to discuss the role of carrageenan in inflammatory bowel diseases and allergic reactions following the current evidence. Furthermore, as no definitive data are available on the safety and the effects of CGN, we suggest gaps to be filled and advise to limit the human exposure to CGN by reducing the consumption of ultra-processed foods.


2021 ◽  
pp. 507-512
Author(s):  
Eli D. Ehrenpreis ◽  
Steven D. Wexner ◽  
John C. Alverdy ◽  
David H. Kruchko

Sign in / Sign up

Export Citation Format

Share Document