Future Research on the Role of the Mesentery in Health and Disease

2021 ◽  
pp. 507-512
Author(s):  
Eli D. Ehrenpreis ◽  
Steven D. Wexner ◽  
John C. Alverdy ◽  
David H. Kruchko
2021 ◽  
Vol 22 (12) ◽  
pp. 6403
Author(s):  
Md Saidur Rahman ◽  
Khandkar Shaharina Hossain ◽  
Sharnali Das ◽  
Sushmita Kundu ◽  
Elikanah Olusayo Adegoke ◽  
...  

Insulin is a polypeptide hormone mainly secreted by β cells in the islets of Langerhans of the pancreas. The hormone potentially coordinates with glucagon to modulate blood glucose levels; insulin acts via an anabolic pathway, while glucagon performs catabolic functions. Insulin regulates glucose levels in the bloodstream and induces glucose storage in the liver, muscles, and adipose tissue, resulting in overall weight gain. The modulation of a wide range of physiological processes by insulin makes its synthesis and levels critical in the onset and progression of several chronic diseases. Although clinical and basic research has made significant progress in understanding the role of insulin in several pathophysiological processes, many aspects of these functions have yet to be elucidated. This review provides an update on insulin secretion and regulation, and its physiological roles and functions in different organs and cells, and implications to overall health. We cast light on recent advances in insulin-signaling targeted therapies, the protective effects of insulin signaling activators against disease, and recommendations and directions for future research.


2021 ◽  
Vol 12 ◽  
Author(s):  
Diego Sanchez ◽  
Maria D. Ganfornina

Apolipoprotein D is a chordate gene early originated in the Lipocalin protein family. Among other features, regulation of its expression in a wide variety of disease conditions in humans, as apparently unrelated as neurodegeneration or breast cancer, have called for attention on this gene. Also, its presence in different tissues, from blood to brain, and different subcellular locations, from HDL lipoparticles to the interior of lysosomes or the surface of extracellular vesicles, poses an interesting challenge in deciphering its physiological function: Is ApoD a moonlighting protein, serving different roles in different cellular compartments, tissues, or organisms? Or does it have a unique biochemical mechanism of action that accounts for such apparently diverse roles in different physiological situations? To answer these questions, we have performed a systematic review of all primary publications where ApoD properties have been investigated in chordates. We conclude that ApoD ligand binding in the Lipocalin pocket, combined with an antioxidant activity performed at the rim of the pocket are properties sufficient to explain ApoD association with different lipid-based structures, where its physiological function is better described as lipid-management than by long-range lipid-transport. Controlling the redox state of these lipid structures in particular subcellular locations or extracellular structures, ApoD is able to modulate an enormous array of apparently diverse processes in the organism, both in health and disease. The new picture emerging from these data should help to put the physiological role of ApoD in new contexts and to inspire well-focused future research.


Author(s):  
Yunling Gao ◽  
Zorina S. Galis

Traditionally, much research effort has been invested into focusing on disease, understanding pathogenic mechanisms, identifying risk factors, and developing effective treatments. A few recent studies unraveling the basis for absence of disease, including cardiovascular disease, despite existing risk factors, a phenomenon commonly known as resilience, are adding new knowledge and suggesting novel therapeutic approaches. Given the central role of endothelial function in cardiovascular health, we herein provide a number of considerations that warrant future research and considering a paradigm shift toward identifying the molecular underpinnings of endothelial resilience.


2017 ◽  
Vol 28 (6) ◽  
pp. 649-673 ◽  
Author(s):  
Ashutosh Kumar ◽  
Vikas Pareek ◽  
Muneeb A. Faiq ◽  
Pavan Kumar ◽  
Khursheed Raza ◽  
...  

AbstractNerve growth factors (NGFs), especially the prototype NGF and brain-derived neurotrophic factor (BDNF), have a diverse array of functions in the central nervous system through their peculiar set of receptors and intricate signaling. They are implicated not only in the development of the nervous system but also in regulation of neurocognitive functions like learning, memory, synaptic transmission, and plasticity. Evidence even suggests their role in continued neurogenesis and experience-dependent neural network remodeling in adult brain. They have also been associated extensively with brain disorders characterized by neurocognitive dysfunction. In the present article, we aimed to make an exhaustive review of literature to get a comprehensive view on the role of NGFs in neurocognitive functions in health and disease. Starting with historical perspective, distribution in adult brain, implied molecular mechanisms, and developmental basis, this article further provides a detailed account of NGFs’ role in specified neurocognitive functions. Furthermore, it discusses plausible NGF-based homeostatic and adaptation mechanisms operating in the pathogenesis of neurocognitive disorders and has presents a survey of such disorders. Finally, it elaborates on current evidence and future possibilities in therapeutic applications of NGFs with an emphasis on recent research updates in drug delivery mechanisms. Conclusive remarks of the article make a strong case for plausible role of NGFs in comprehensive regulation of the neurocognitive functions and pathogenesis of related disorders and advocate that future research should be directed to explore use of NGF-based mechanisms in the prevention of implicated diseases as well as to target these molecules pharmacologically.


2018 ◽  
Vol 10 (3) ◽  
pp. 306-313 ◽  
Author(s):  
J. F. Felix ◽  
C. A. M. Cecil

AbstractEpigenetic changes represent a potential mechanism underlying associations of early-life exposures and later life health outcomes. Population-based cohort studies starting in early life are an attractive framework to study the role of such changes. DNA methylation is the most studied epigenetic mechanism in population research. We discuss the application of DNA methylation in early-life population studies, some recent findings, key challenges and recommendations for future research. Studies into DNA methylation within the Developmental Origins of Health and Disease framework generally either explore associations between prenatal exposures and offspring DNA methylation or associations between offspring DNA methylation in early life and later health outcomes. Only a few studies to date have integrated prospective exposure, epigenetic and phenotypic data in order to explicitly test the role of DNA methylation as a potential biological mediator of environmental effects on health outcomes. Population epigenetics is an emerging field which has challenges in terms of methodology and interpretation of the data. Key challenges include tissue specificity, cell type adjustment, issues of power and comparability of findings, genetic influences, and exploring causality and functional consequences. Ongoing studies are working on addressing these issues. Large collaborative efforts of prospective cohorts are emerging, with clear benefits in terms of optimizing power and use of resources, and in advancing methodology. In the future, multidisciplinary approaches, within and beyond longitudinal birth and preconception cohorts will advance this complex, but highly promising, the field of research.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Leigh Frame ◽  
Elise Costa ◽  
Scott Jackson

Abstract Objectives The ability to measure and describe the microbiome has led to a surge in information about the gut microbiome and its role in health and disease. The relationship between nutrition and the gut microbiome is central, as the diet is a source of microbiota, a source of fuel for the microbiota, and an indicator of the composition of the gut microbiome. We aim to assess the current understanding of the interactions between nutrition and the gut microbiome in healthy adults. A solid understanding of the interactions between nutrition and a healthy gut microbiome will form the foundation for understanding the role in disease prevention and treatment. Methods PubMed and Google Scholar searches for review articles relating to nutrition and the gut microbiome in healthy adults led to the inclusion of 38 articles in this systematic review. Results Much of the research has focused on carbohydrates in the form of dietary fiber, which are fuel for the gut microbiota. The beneficial effects of fiber have centered on Short Chain Fatty Acids (SCFAs) that are required by colonocytes (barrier function), improve absorption (minerals, water), and reduce intestinal transit time (colon cancer). Contrastingly, a low fiber, high protein diet promotes microbial protein metabolism, leading to potentially dangerous by-products that can stagnate in the gut. The bidirectional relationship between micronutrition and the gut microbiome is emerging. The microbiota utilize and produce micronutrients, leading to confounding relationships between nutritional status and biologic micronutrient concentrations, chiefly the B and K vitamins. While promising, the study of non-nutritive food components (polyphenols) and the gut microbiome is in its infancy. The role of other food components (food additives, contaminants) warrant exploration and are a significant research gap to-date. Conclusions Diet and nutrition have profound effects on the gut microbiome composition. This, in turn, affects a wide array of metabolic, hormonal, and neurological processes that influence our health and disease. Currently, there is no consensus in the scientific community on what defines a “healthy” gut microbiome. Future research must consider individual responses to diet and the role of diet in the response of the gut microbiome to interventions. Funding Sources N/A. Supporting Tables, Images and/or Graphs


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. 44-45
Author(s):  
Gustavo Duque

Abstract Circulating osteogenic progenitor (COP) cells are a population of cells in the peripheral blood with the capacity for bone formation and broader differentiation into mesoderm-like cells in vitro. While some of their biological characteristics are documented in vitro, their role in the aging process and the pathogenesis of musculoskeletal diseases remains yet to be thoroughly evaluated. This translational session will go from bench to bedside, reviewing the current evidence on COP cells. In this session, we will provide an overview of the role of COP cells in the aging process and a number of physiological and pathological conditions and identify areas for future research. In addition, we will suggest possible areas for clinical utilization in the management of musculoskeletal diseases, which include novel diagnostic and therapeutic uses.


2019 ◽  
Vol 48 (6) ◽  
pp. 776-782 ◽  
Author(s):  
Arduino A Mangoni ◽  
Roman N Rodionov ◽  
Mark McEvoy ◽  
Angelo Zinellu ◽  
Ciriaco Carru ◽  
...  

Abstract The elucidation of the metabolic pathways of the amino acid arginine and their role in health and disease have been an intensive focus of basic and clinical research for over a century. The recent advent of robust analytical techniques for biomarker assessment in large population cohorts has allowed the investigation of the pathophysiological role of specific arginine metabolites in key chronic disease states in old age, particularly those characterised by a reduced synthesis of endothelial nitric oxide, with consequent vascular disease and atherosclerosis. Two arginine metabolites have been increasingly studied in regard to their potential role in risk stratification and in the identification of novel therapeutic targets: the methylated arginine asymmetric dimethylarginine (ADMA) and the arginine analogue homoarginine. Higher circulating concentrations of ADMA, a potent inhibitor of nitric oxide synthesis, have been shown to predict adverse cardiovascular outcomes. By contrast, there is emerging evidence that homoarginine might exert cardioprotective effects. This review highlights recent advances in the biological and clinical role of ADMA and homoarginine in cardiovascular disease and other emerging fields, particularly chronic obstructive pulmonary disease, dementia, and depression. It also discusses opportunities for future research directions with the ultimate goal of translating knowledge of arginine metabolism, and its role in health and disease, into the clinical care of older adults.


2016 ◽  
Vol 4 (5) ◽  
Author(s):  
Grace E. Deitzler ◽  
Maria J. Ruiz ◽  
Cory Weimer ◽  
SoEun Park ◽  
Lloyd Robinson ◽  
...  

Research on vaginal infections is currently limited by a lack of available fully sequenced bacterial reference strains. Here, we present strains (now available through BEI Resources) and genome sequences for a set of 14 vaginal isolates from the phylumFirmicutes. These genome sequences provide a valuable resource for future research in understanding the role of Gram-positive bacteria in vaginal health and disease.


Metabolites ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 286 ◽  
Author(s):  
Wei Perng ◽  
Stella Aslibekyan

Advancements in high-throughput technologies have made it feasible to study thousands of biological pathways simultaneously for a holistic assessment of health and disease risk via ‘omics platforms. A major challenge in ‘omics research revolves around the reproducibility of findings—a feat that hinges upon balancing false-positive associations with generalizability. Given the foundational role of reproducibility in scientific inference, replication and validation of ‘omics findings are cornerstones of this effort. In this narrative review, we define key terms relevant to replication and validation, present issues surrounding each concept with historical and contemporary examples from genomics (the most well-established and upstream ‘omics), discuss special issues and unique considerations for replication and validation in metabolomics (an emerging field and most downstream ‘omics for which best practices remain yet to be established), and make suggestions for future research leveraging multiple ‘omics datasets.


Sign in / Sign up

Export Citation Format

Share Document