scholarly journals MicroRNAs: immune modulators in cancer immunotherapy

Author(s):  
Yun Xing ◽  
Zhiqiang Wang ◽  
Zhou Lu ◽  
Jie Xia ◽  
Zhangjuan Xie ◽  
...  

Abstract MicroRNA (miRNA) is a class of endogenous small non-coding RNA of 18–25 nucleotides and plays regulatory roles in both physiological and pathological processes. Emerging evidence support that miRNAs function as immune modulators in tumors. MiRNAs as tumor suppressors or oncogenes are also found to be able to modulate anti-tumor immunity or link the crosstalk between tumor cells and immune cells surrounding. Based on the specific regulating function, miRNAs can be used as predictive, prognostic biomarkers and therapeutic targets in immunotherapy. Here, we review new findings about role of miRNAs in modulating immune responses, as well as discuss mechanisms underlying their dysregulation, and their clinical potentials as indicators of tumor prognosis or to sensitize cancer immunotherapy.

2021 ◽  
Vol 12 ◽  
Author(s):  
Yingying Xing ◽  
Guojing Ruan ◽  
Haiwei Ni ◽  
Hai Qin ◽  
Simiao Chen ◽  
...  

MiRNA is a type of small non-coding RNA, by regulating downstream gene expression that affects the progression of multiple diseases, especially cancer. MiRNA can participate in the biological processes of tumor, including proliferation, invasion and escape, and exhibit tumor enhancement or inhibition. The tumor immune microenvironment contains numerous immune cells. These cells include lymphocytes with tumor suppressor effects such as CD8+ T cells and natural killer cells, as well as some tumor-promoting cells with immunosuppressive functions, such as regulatory T cells and myeloid-derived suppressor cells. MiRNA can affect the tumor immune microenvironment by regulating the function of immune cells, which in turn modulates the progression of tumor cells. Investigating the role of miRNA in regulating the tumor immune microenvironment will help elucidate the specific mechanisms of interaction between immune cells and tumor cells, and may facilitate the use of miRNA as a predictor of immune disorders in tumor progression. This review summarizes the multifarious roles of miRNA in tumor progression through regulation of the tumor immune microenvironment, and provides guidance for the development of miRNA drugs to treat tumors and for the use of miRNA as an auxiliary means in tumor immunotherapy.


Cancers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 5651
Author(s):  
Eleftheria Papaioannou ◽  
María del Pilar González-Molina ◽  
Ana M. Prieto-Muñoz ◽  
Laura Gámez-Reche ◽  
Alicia González-Martín

Cancer immunology research has mainly focused on the role of protein-coding genes in regulating immune responses to tumors. However, despite more than 70% of the human genome is transcribed, less than 2% encodes proteins. Many non-coding RNAs (ncRNAs), including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), have been identified as critical regulators of immune cell development and function, suggesting that they might play important roles in orchestrating immune responses against tumors. In this review, we summarize the scientific advances on the role of ncRNAs in regulating adaptive tumor immunity, and discuss their potential therapeutic value in the context of cancer immunotherapy.


2014 ◽  
Vol 2014 ◽  
pp. 1-33 ◽  
Author(s):  
Jiamin Zhou ◽  
Yi Xiang ◽  
Teizo Yoshimura ◽  
Keqiang Chen ◽  
Wanghua Gong ◽  
...  

Chemoattractant receptors are a family of seven transmembrane G protein coupled receptors (GPCRs) initially found to mediate the chemotaxis and activation of immune cells. During the past decades, the functions of these GPCRs have been discovered to not only regulate leukocyte trafficking and promote immune responses, but also play important roles in homeostasis, development, angiogenesis, and tumor progression. Accumulating evidence indicates that chemoattractant GPCRs and their ligands promote the progression of malignant tumors based on their capacity to orchestrate the infiltration of the tumor microenvironment by immune cells, endothelial cells, fibroblasts, and mesenchymal cells. This facilitates the interaction of tumor cells with host cells, tumor cells with tumor cells, and host cells with host cells to provide a basis for the expansion of established tumors and development of distant metastasis. In addition, many malignant tumors of the nonhematopoietic origin express multiple chemoattractant GPCRs that increase the invasiveness and metastasis of tumor cells. Therefore, GPCRs and their ligands constitute targets for the development of novel antitumor therapeutics.


2021 ◽  
Author(s):  
Kanako Yokomizo ◽  
Kayoko Waki ◽  
Miyako Ozawa ◽  
Keiko Yamamoto ◽  
Sachiko Ogasawara ◽  
...  

Abstract High mobility group box 1 (HMGB1) has been reported as a damage-associated molecular pattern (DAMP) molecule that is released from damaged or dead cells and induces inflammation and subsequent innate immunity. However, the role of HMGB1 in the anti-tumor immunity is unclear since inflammation in the tumor microenvironment also contributes to tumor promotion and progression. In the present study, we established HMGB1-knockout clones from B16F10 and CT26 murine tumors by genome editing using the CRISPR/Cas9 system and investigated the role of HMGB1 in anti-tumor immunity. We found that 1) knockout of HMGB1 in the tumor cells suppressed in vivo, but not in vitro, tumor growth, 2) the suppression of the in vivo tumor growth was mediated by CD8 T cells, and 3) infiltration of CD8 T cells, macrophages and dendritic cells into the tumor tissues was accelerated in HMGB1-knockout tumors. These results demonstrated that knockout of HMGB1 in tumor cells converted tumors from poor infiltration of immune cells called “cold” to “immune-inflamed” or “hot” and inhibited in vivo tumor growth mediated by cytotoxic T lymphocytes. Infiltration of immune cells to the tumor microenvironment is an important step in the series known as the cancer immunity cycle. Thus, manipulation of tumor-derived HMGB1 might be applicable to improve the clinical outcomes of cancer immunotherapies, including immune checkpoint blockades and cancer vaccine therapies.


Author(s):  
Myeong Joon Kim ◽  
Sang-Jun Ha

In the tumor immune microenvironment (TIME), tumor cells interact with various cells and operate various strategies to avoid antitumor immune responses. These immune escape strategies often make the TIME resistant to cancer immunotherapy. Neutralizing immune escape strategies is necessary to overcome resistance to cancer immunotherapy. Immune checkpoint receptors (ICRs) expressed in effector immune cells inhibit their effector function via direct interaction with immune checkpoint ligands (ICLs) expressed in tumor cells. Therefore, blocking ICRs or ICLs has been developed as a promising cancer immunotherapy by reinvigorating the function of effector immune cells. Among the ICRs, programmed cell death 1 (PD-1) has mainly been antagonized to enhance the survival of human patients with cancer by restoring the function of tumor-infiltrating (TI) CD8+ T cells. It has been demonstrated that PD-1 is expressed not only in TI CD8+ T cells, but also in other TI immune cells and even tumor cells. While PD-1 suppresses the function of TI CD8+ T cells, it is controversial whether PD-1 suppresses or amplifies the suppressive function of TI-suppressive immune cells (e.g., regulatory T cells, tumor-associated macrophages, and myeloid cells). There is also controversy regarding the role of tumor-expressing PD-1. Therefore, a precise understanding of the expression pattern and function of PD-1 in each cell subset is important for improving the efficacy of cancer immunotherapy. Here, we review the differential role of PD-1 expressed by various TI immune cells and tumor cells. We focused on how cell-type-specific ablation or blockade of PD-1 affects tumor growth in a murine tumor model. Furthermore, we will also describe how the blockade of PD-1 acts on TI immune cells in human patients with cancer.


Author(s):  
Gabriela Sarti Kinker ◽  
Glauco Akelinghton Freire Vitiello ◽  
Wallax Augusto Silva Ferreira ◽  
Alexandre Silva Chaves ◽  
Vladmir Cláudio Cordeiro de Lima ◽  
...  

The immune system plays a crucial role in cancer development either by fostering tumor growth or destroying tumor cells, which has open new avenues for cancer immunotherapy. It was only over the last decade that the role of B cells in controlling anti-tumor immune responses in the tumor milieu has begun to be appreciated. B and plasma cells can exert anti-tumor effects through antibody-dependent cell cytotoxicity (ADCC) and activation of the complement cascade, even though their effector functions extend beyond the classical humoral immunity. In tumor tissues, B cells can be found in lymphoid aggregates, known as tertiary lymphoid structures (TLSs), well-organized non-encapsulated structures composed of immune and stromal cells. These structures reflect a process of lymphoid neogenesis occurring in peripheral tissues upon long-lasting exposure to inflammatory signals. The TLS provides an area of intense B cell antigen presentation that can lead to optimal T cell activation and effector functions, as well as the generation of effector B cells, which can be further differentiated in either antibody-secreting plasma cells or memory B cells. Of clinical interest, the crosstalk between B cells and antigen-experienced and exhausted CD8+ T cells within mature TLS was recently associated with improved response to immune checkpoint blockade (ICB) in melanoma, sarcoma and lung cancer. Otherwise, B cells sparsely distributed in the tumor microenvironment or organized in immature TLSs were found to exert immune-regulatory functions, inhibiting anti-tumor immunity through the secretion of anti-inflammatory cytokines. Such phenotype might arise when B cells interact with malignant cells rather than T and dendritic cells. Differences in the spatial distribution likely underlie discrepancies between the role of B cells inferred from human samples or mouse models. Many fast-growing orthotopic tumors develop a malignant cell-rich bulk with reduced stroma and are devoid of TLSs, which highlights the importance of carefully selecting pre-clinical models. In summary, strategies that promote TLS formation in close proximity to tumor cells are likely to favor immunotherapy responses. Here, the cellular and molecular programs coordinating B cell development, activation and organization within TLSs will be reviewed, focusing on their translational relevance to cancer immunotherapy.


Cancers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1469 ◽  
Author(s):  
Duygu Sag ◽  
Zeynep Ozge Ayyildiz ◽  
Sinem Gunalp ◽  
Gerhard Wingender

Expression of TRAIL (tumor necrosis factor–related apoptosis–inducing ligand) by immune cells can lead to the induction of apoptosis in tumor cells. However, it becomes increasingly clear that the interaction of TRAIL and its death receptors (DRs) can also directly impact immune cells and influence immune responses. Here, we review what is known about the role of TRAIL/DRs in immune cells and immune responses in general and in the tumor microenvironment in particular.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Tiecheng Wang ◽  
Jiakang Jin ◽  
Chao Qian ◽  
Jianan Lou ◽  
Jinti Lin ◽  
...  

AbstractAs the essential sexual hormone, estrogen and its receptor has been proved to participate in the regulation of autoimmunity diseases and anti-tumor immunity. The adjustment of tumor immunity is related to the interaction between cancer cells, immune cells and tumor microenvironment, all of which is considered as the potential target in estrogen-induced immune system regulation. However, the specific mechanism of estrogen-induced immunity is poorly understood. Typically, estrogen causes the nuclear localization of estrogen/estrogen receptor complex and alternates the transcription pattern of target genes, leading to the reprogramming of tumor cells and differentiation of immune cells. However, the estrogen-induced non-canonical signal pathway activation is also crucial to the rapid function of estrogen, such as NF-κB, MAPK-ERK, and β-catenin pathway activation, which has not been totally illuminated. So, the investigation of estrogen modulatory mechanisms in these two manners is vital for the tumor immunity and can provide the potential for endocrine hormone targeted cancer immunotherapy. Here, this review summarized the estrogen-induced canonical and non-canonical signal transduction pathway and aimed to focus on the relationship among estrogen and cancer immunity as well as immune-related tumor microenvironment regulation. Results from these preclinical researches elucidated that the estrogen-target therapy has the application prospect of cancer immunotherapy, which requires the further translational research of these treatment strategies.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Cheng-Tao Jiang ◽  
Kai-Ge Chen ◽  
An Liu ◽  
Hua Huang ◽  
Ya-Nan Fan ◽  
...  

AbstractModulating effector immune cells via monoclonal antibodies (mAbs) and facilitating the co-engagement of T cells and tumor cells via chimeric antigen receptor- T cells or bispecific T cell-engaging antibodies are two typical cancer immunotherapy approaches. We speculated that immobilizing two types of mAbs against effector cells and tumor cells on a single nanoparticle could integrate the functions of these two approaches, as the engineered formulation (immunomodulating nano-adaptor, imNA) could potentially associate with both cells and bridge them together like an ‘adaptor’ while maintaining the immunomodulatory properties of the parental mAbs. However, existing mAbs-immobilization strategies mainly rely on a chemical reaction, a process that is rough and difficult to control. Here, we build up a versatile antibody immobilization platform by conjugating anti-IgG (Fc specific) antibody (αFc) onto the nanoparticle surface (αFc-NP), and confirm that αFc-NP could conveniently and efficiently immobilize two types of mAbs through Fc-specific noncovalent interactions to form imNAs. Finally, we validate the superiority of imNAs over the mixture of parental mAbs in T cell-, natural killer cell- and macrophage-mediated antitumor immune responses in multiple murine tumor models.


Cancers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 2184
Author(s):  
Valentina Cazzetta ◽  
Sara Franzese ◽  
Claudia Carenza ◽  
Silvia Della Bella ◽  
Joanna Mikulak ◽  
...  

Natural killer (NK) and dendritic cells (DCs) are innate immune cells that play a crucial role in anti-tumor immunity. NK cells kill tumor cells through direct cytotoxicity and cytokine secretion. DCs are needed for the activation of adaptive immune responses against tumor cells. Both NK cells and DCs are subdivided in several subsets endowed with specialized effector functions. Crosstalk between NK cells and DCs leads to the reciprocal control of their activation and polarization of immune responses. In this review, we describe the role of NK cells and DCs in liver cancer, focusing on the mechanisms involved in their reciprocal control and activation. In this context, intrahepatic NK cells and DCs present unique immunological features, due to the constant exposure to non-self-circulating antigens. These interactions might play a fundamental role in the pathology of primary liver cancer, namely hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC). Additionally, the implications of these immune changes are relevant from the perspective of improving the cancer immunotherapy strategies in HCC and ICC patients.


Sign in / Sign up

Export Citation Format

Share Document