scholarly journals A bioengineered organotypic prostate model for the study of tumor microenvironment-induced immune cell activation

2020 ◽  
Vol 12 (10) ◽  
pp. 250-262
Author(s):  
Sheena C Kerr ◽  
Molly M Morgan ◽  
Amani A Gillette ◽  
Megan K Livingston ◽  
Karina M Lugo-Cintron ◽  
...  

Abstract The prostate tumor microenvironment (TME) is strongly immunosuppressive; it is largely driven by alteration in cell phenotypes (i.e. tumor-associated macrophages and exhausted cytotoxic T cells) that result in pro-tumorigenic conditions and tumor growth. A greater understanding into how these altered immune cell phenotypes are developed and could potentially be reversed would provide important insights into improved treatment efficacy for prostate cancer. Here, we report a microfluidic model of the prostate TME that mimics prostate ducts across various stages of prostate cancer progression, with associated stroma and immune cells. Using this platform, we exposed immune cells to a benign prostate TME or a metastatic prostate TME and investigated their metabolism, gene and cytokine expression. Immune cells exposed to the metastatic TME showed metabolic differences with a higher redox ratio indicating a switch to a more glycolytic metabolic profile. These cells also increased expression of pro-tumor response cytokines that have been shown to increase cell migration and angiogenesis such as Interleukin-1 (IL-1) a and Granulocyte-macrophage colony-stimulating factor (GM-CSF). Lastly, we observed decreased TLR, STAT signaling and TRAIL expression, suggesting that phenotypes derived from exposure to the metastatic TME could have an impaired anti-tumor response. This platform could provide a valuable tool for studying immune cell phenotypes in in vitro tumor microenvironments.

Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1020
Author(s):  
Stefan Grote ◽  
Guillermo Ureña-Bailén ◽  
Kenneth Chun-Ho Chan ◽  
Caroline Baden ◽  
Markus Mezger ◽  
...  

Background: Melanoma is the most lethal of all skin-related cancers with incidences continuously rising. Novel therapeutic approaches are urgently needed, especially for the treatment of metastasizing or therapy-resistant melanoma. CAR-modified immune cells have shown excellent results in treating hematological malignancies and might represent a new treatment strategy for refractory melanoma. However, solid tumors pose some obstacles for cellular immunotherapy, including the identification of tumor-specific target antigens, insufficient homing and infiltration of immune cells as well as immune cell dysfunction in the immunosuppressive tumor microenvironment (TME). Methods: In order to investigate whether CAR NK cell-based immunotherapy can overcome the obstacles posed by the TME in melanoma, we generated CAR NK-92 cells targeting CD276 (B7-H3) which is abundantly expressed in solid tumors, including melanoma, and tested their effectivity in vitro in the presence of low pH, hypoxia and other known factors of the TME influencing anti-tumor responses. Moreover, the CRISPR/Cas9-induced disruption of the inhibitory receptor NKG2A was assessed for its potential enhancement of NK-92-mediated anti-tumor activity. Results: CD276-CAR NK-92 cells induced specific cytolysis of melanoma cell lines while being able to overcome a variety of the immunosuppressive effects normally exerted by the TME. NKG2A knock-out did not further improve CAR NK-92 cell-mediated cytotoxicity. Conclusions: The strong cytotoxic effect of a CD276-specific CAR in combination with an “off-the-shelf” NK-92 cell line not being impaired by some of the most prominent negative factors of the TME make CD276-CAR NK-92 cells a promising cellular product for the treatment of melanoma and beyond.


2020 ◽  
Vol 21 (23) ◽  
pp. 8929
Author(s):  
Melanie Kienzl ◽  
Julia Kargl ◽  
Rudolf Schicho

Leukocytes are part of the tumor microenvironment (TME) and are critical determinants of tumor progression. Because of the immunoregulatory properties of cannabinoids, the endocannabinoid system (ECS) may have an important role in shaping the TME. Members of the ECS, an entity that consists of cannabinoid receptors, endocannabinoids and their synthesizing/degrading enzymes, have been associated with both tumor growth and rejection. Immune cells express cannabinoid receptors and produce endocannabinoids, thereby forming an “immune endocannabinoid system”. Although in vitro effects of exogenous cannabinoids on immune cells are well described, the role of the ECS in the TME, and hence in tumor development and immunotherapy, is still elusive. This review/opinion discusses the possibility that the “immune endocannabinoid system” can fundamentally influence tumor progression. The widespread influence of cannabinoids on immune cell functions makes the members of the ECS an interesting target that could support immunotherapy.


2017 ◽  
Vol 313 (2) ◽  
pp. L406-L415 ◽  
Author(s):  
Gene T. Yocum ◽  
Damian L. Turner ◽  
Jennifer Danielsson ◽  
Matthew B. Barajas ◽  
Yi Zhang ◽  
...  

Emerging evidence indicates that hypnotic anesthetics affect immune function. Many anesthetics potentiate γ-aminobutyric acid A receptor (GABAAR) activation, and these receptors are expressed on multiple subtypes of immune cells, providing a potential mechanistic link. Like immune cells, airway smooth muscle (ASM) cells also express GABAARs, particularly isoforms containing α4-subunits, and activation of these receptors leads to ASM relaxation. We sought to determine if GABAAR signaling modulates the ASM contractile and inflammatory phenotype of a murine allergic asthma model utilizing GABAAR α4-subunit global knockout (KO; Gabra40/0) mice. Wild-type (WT) and Gabra4 KO mice were sensitized with house dust mite (HDM) antigen or exposed to PBS intranasally 5 days/wk for 3 wk. Ex vivo tracheal rings from HDM-sensitized WT and Gabra4 KO mice exhibited similar magnitudes of acetylcholine-induced contractile force and isoproterenol-induced relaxation ( P = not significant; n = 4). In contrast, in vivo airway resistance (flexiVent) was significantly increased in Gabra4 KO mice ( P < 0.05, n = 8). Moreover, the Gabra4 KO mice demonstrated increased eosinophilic lung infiltration ( P < 0.05; n = 4) and increased markers of lung T-cell activation/memory (CD62L low, CD44 high; P < 0.01, n = 4). In vitro, Gabra4 KO CD4+ cells produced increased cytokines and exhibited increased proliferation after stimulation of the T-cell receptor as compared with WT CD4+ cells. These data suggest that the GABAAR α4-subunit plays a role in immune cell function during allergic lung sensitization. Thus GABAAR α4-subunit-specific agonists have the therapeutic potential to treat asthma via two mechanisms: direct ASM relaxation and inhibition of airway inflammation.


2021 ◽  
Vol 10 ◽  
Author(s):  
Shaojie Wu ◽  
Huixian Kuang ◽  
Jin Ke ◽  
Manfei Pi ◽  
Dong-Hua Yang

Tumor cells rewire metabolism to meet their increased nutritional demands, allowing the maintenance of tumor survival, proliferation, and expansion. Enhancement of glycolysis and glutaminolysis is identified in most, if not all cancers, including multiple myeloma (MM), which interacts with a hypoxic, acidic, and nutritionally deficient tumor microenvironment (TME). In this review, we discuss the metabolic changes including generation, depletion or accumulation of metabolites and signaling pathways, as well as their relationship with the TME in MM cells. Moreover, we describe the crosstalk among metabolism, TME, and changing function of immune cells during cancer progression. The overlapping metabolic phenotype between MM and immune cells is discussed. In this sense, targeting metabolism of MM cells is a promising therapeutic approach. We propose that it is important to define the metabolic signatures that may regulate the function of immune cells in TME in order to improve the response to immunotherapy.


2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Juliana Hofstatter Azambuja ◽  
Nils Ludwig ◽  
Saigopalakrishna Yerneni ◽  
Aparna Rao ◽  
Elizandra Braganhol ◽  
...  

Abstract Background Glioblastoma is one of the most immunosuppressive human tumors. Emerging data suggest that glioblastoma-derived exosomes (GBex) reprogram the tumor microenvironment into a tumor-promoting milieu by mechanisms that not yet understood. Methods Exosomes were isolated from supernatants of glioblastoma cell lines by size exclusion chromatography. The GBex endosomal origin, size, protein cargos, and ex vivo effects on immune cell functions were determined. GBex were injected intravenously into mice to evaluate their ability to in vivo modulate normal immune cell subsets. Results GBex carried immunosuppressive proteins, including FasL, TRAIL, CTLA-4, CD39, and CD73, but contained few immunostimulatory proteins. GBex co-incubated with primary human immune cells induced simultaneous activation of multiple molecular pathways. In CD8+ T cells, GBex suppressed TNF-α and INF-γ release and mediated apoptosis. GBex suppressed natural killer (NK) and CD4+ T-cell activation. GBex activated the NF-κB pathway in macrophages and promoted their differentiation into M2 cells. Inhibition of the NF-κB pathway in macrophages reversed the GBex-mediated effects. GBex-driven reprogramming of macrophages involved the release of soluble factors that promoted tumor proliferation in vitro. In mice injected with GBex, the frequency of splenic CD8+ T cells, NK cells, and M1-like macrophages was reduced, while that of naïve and M2-like macrophages increased (P &lt; .05). Conclusions GBex reprogrammed functions of all types of immune cells in vitro and altered their frequency in vivo. By creating and sustaining a highly immunosuppressive environment, GBex play a key role in promoting tumor progression.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jasmin Felux ◽  
Annika Erbacher ◽  
Magali Breckler ◽  
Roxane Hervé ◽  
Delphine Lemeiter ◽  
...  

Increased concentrations of circulating chromatin, especially oligo-nucleosomes, are observed in sepsis, cancer and some inflammatory autoimmune diseases like systemic lupus erythematosus (SLE). In SLE, circulating nucleosomes mainly result from increased apoptosis and decreased clearance of apoptotic cells. Once released, nucleosomes behave both as an autoantigen and as a damage-associated molecular pattern (DAMP) by activating several immune cells, especially pro-inflammatory cells. Deoxyribonuclease 1 (DNase1) is a major serum nuclease whose activity is decreased in mouse and human lupus. Likewise, the mitochondrial chaperone tumor necrosis factor (TNF) receptor-associated protein-1 (Trap1) protects against oxidative stress, which is increased in SLE. Here, using wild type, DNase1-deficient and DNase1/Trap1-deficient mice, we demonstrate that DNase1 is a major serum nuclease involved in chromatin degradation, especially when the plasminogen system is activated. In vitro degradation assays show that chromatin digestion is strongly impaired in serum from DNase1/Trap1-deficient mice as compared to wild type mice. In vivo, after injection of purified chromatin, clearance of circulating chromatin is delayed in DNase1/Trap1-deficient mice in comparison to wild type mice. Since defective chromatin clearance may lead to chromatin deposition in tissues and subsequent immune cell activation, spleen cells were stimulated in vitro with chromatin. Splenocytes were activated by chromatin, as shown by interleukin (IL)-12 secretion and CD69 up-regulation. Moreover, cell activation was exacerbated when Trap1 is deficient. Importantly, we also show that cytokines involved in lupus pathogenesis down-regulate Trap1 expression in splenocytes. Therefore, combined low activities of both DNase1 and Trap1 lead to an impaired degradation of chromatin in vitro, delayed chromatin clearance in vivo and enhanced activation of immune cells. This situation may be encountered especially, but not exclusively, in SLE by the negative action of cytokines on Trap1 expression.


2017 ◽  
Author(s):  
Elham Azizi ◽  
Ambrose J. Carr ◽  
George Plitas ◽  
Andrew E. Cornish ◽  
Catherine Konopacki ◽  
...  

SUMMARYKnowledge of immune cell phenotypes in the tumor microenvironment is essential for understanding mechanisms of cancer progression and immunotherapy response. We created an immune map of breast cancer using single-cell RNA-seq data from 45,000 immune cells from eight breast carcinomas, as well as matched normal breast tissue, blood, and lymph node. We developed a preprocessing pipeline, SEQC, and a Bayesian clustering and normalization method, Biscuit, to address computational challenges inherent to single-cell data. Despite significant similarity between normal and tumor tissue-resident immune cells, we observed continuous tumor-specific phenotypic expansions driven by environmental cues. Analysis of paired single-cell RNA and T cell receptor (TCR) sequencing data from 27,000 additional T cells revealed the combinatorial impact of TCR utilization on phenotypic diversity. Our results support a model of continuous activation in T cells and do not comport with the macrophage polarization model in cancer, with important implications for characterizing tumor-infiltrating immune cells.


2015 ◽  
Vol 33 (7_suppl) ◽  
pp. 81-81 ◽  
Author(s):  
Russell Kent Pachynski ◽  
Brian Zabel ◽  
Weng-In Leong ◽  
Robert Crowder ◽  
Donna Peehl ◽  
...  

81 Background: The infiltration of immune cells into the tumor microenvironment can regulate growth and survival of neoplastic cells. Several studies have shown a correlation between increases in the number of effector immune cells present in a tumor and clinical outcomes in many human tumors, including prostate. The field of prostate cancer immunotherapy continues to grow, with sipuleucel-T already approved and a recombinant vaccinia-PSA (Prostvac) currently in a Phase III clinical trial. Recent studies have shown immune cell infiltration into prostate tumors after systemic administration of sipuleucel-T, suggesting infiltration of these cells may be a key step in the mechanism of action. Methods: Here, in a survey of public whole genome expression datasets we found that the gene for chemerin (RARRES2), a widely expressed endogenous chemoattractant protein for immune cells, is downregulated in prostate cancer. In mouse models, we have previously shown that forced re-expression of chemerin at sites of tumor results in an increase in immune cell infiltration (e.g. NK and T cells), as well as significantly reduced tumor growth (Pachynski JEM 2012). Results: In addition to this published analysis, using RT-qPCR we have gone on to confirm that human prostate tumors have significantly less chemerin (RARRES2) compared to normal prostate tissue. Preliminary immunohistochemistry results in human tumors using an anti-human chemerin antibody, are consistent with our qPCR results, suggesting human prostate tumors downregulate chemerin during their malignant transformation. Conclusions: We have shown, for the first time, that human prostate tumors downregulate chemerin compared to normal prostate tissue. We hypothesize that this is one mechanism of “immune escape.” Therapeutic forced re-expression of chemerin in human tumors may restore anti-tumor immunity within the tumor microenvironment resulting in slowed growth and regression of established tumors. Additionally, chemerin’s ability to recruit NK and T cells into the tumor microenvironment may make it an ideal therapy to combine with other treatments aimed at boosting the immune response, such as sipuleucel-T or checkpoint inhibition (e.g. anti-CTLA4, anti-PD1/PDL1).


2021 ◽  
Vol 11 ◽  
Author(s):  
Xuejin Zhu ◽  
Yangjia Zhuo ◽  
Shulin Wu ◽  
Yanfei Chen ◽  
Jianheng Ye ◽  
...  

Transcription factor EB (TFEB), a member of the MiT family, is dysregulated in different cancers and exerts specific biological functions within the tumor microenvironment. Downregulation of TFEB induces macrophage polarization in the TME and promotes tumor progression. However, the biological role and clinical significance of TFEB in prostate cancer (PCa) remain unknown. This study aimed to identify the role of TFEB in PCa and its potential clinical value. We explored TFEB expression in PCa using public databases and verified its prognostic value using immunohistochemistry in PCa tissue samples. The results revealed that TFEB expression was up-regulated in PCa tissues and was associated with cancer metastasis. Next, overexpression of TFEB promoted PCa cell malignant behavior in in vivo and in vitro experiments. RNA-sequencing and bioinformatics analysis showed high expression of TFEB promoted lysosomal biogenesis and knockdown of TFEB expression decreased the number of lysosomes. Furthermore, the ATP-binding cassette transporter A2 (ABCA2) was identified as a target gene of TFEB, which was verified using the cleavage under targets and release using nuclease (CUT&amp;RUN) assay and qRT-PCR. Silencing of ABCA2 reduced lysosomal biogenesis and decreased matrix metalloproteinases expression, which reduced PCa cell invasion and migration in the tumor microenvironment. Our study suggests that TFEB promotes PCa progression by regulating ABCA2 through lysosomal biogenesis and may serve as a prognostic factor or as a potential therapeutic target of PCa.


Sign in / Sign up

Export Citation Format

Share Document