Expression of the leukocyte chemoattractant chemerin in human prostate tumors.

2015 ◽  
Vol 33 (7_suppl) ◽  
pp. 81-81 ◽  
Author(s):  
Russell Kent Pachynski ◽  
Brian Zabel ◽  
Weng-In Leong ◽  
Robert Crowder ◽  
Donna Peehl ◽  
...  

81 Background: The infiltration of immune cells into the tumor microenvironment can regulate growth and survival of neoplastic cells. Several studies have shown a correlation between increases in the number of effector immune cells present in a tumor and clinical outcomes in many human tumors, including prostate. The field of prostate cancer immunotherapy continues to grow, with sipuleucel-T already approved and a recombinant vaccinia-PSA (Prostvac) currently in a Phase III clinical trial. Recent studies have shown immune cell infiltration into prostate tumors after systemic administration of sipuleucel-T, suggesting infiltration of these cells may be a key step in the mechanism of action. Methods: Here, in a survey of public whole genome expression datasets we found that the gene for chemerin (RARRES2), a widely expressed endogenous chemoattractant protein for immune cells, is downregulated in prostate cancer. In mouse models, we have previously shown that forced re-expression of chemerin at sites of tumor results in an increase in immune cell infiltration (e.g. NK and T cells), as well as significantly reduced tumor growth (Pachynski JEM 2012). Results: In addition to this published analysis, using RT-qPCR we have gone on to confirm that human prostate tumors have significantly less chemerin (RARRES2) compared to normal prostate tissue. Preliminary immunohistochemistry results in human tumors using an anti-human chemerin antibody, are consistent with our qPCR results, suggesting human prostate tumors downregulate chemerin during their malignant transformation. Conclusions: We have shown, for the first time, that human prostate tumors downregulate chemerin compared to normal prostate tissue. We hypothesize that this is one mechanism of “immune escape.” Therapeutic forced re-expression of chemerin in human tumors may restore anti-tumor immunity within the tumor microenvironment resulting in slowed growth and regression of established tumors. Additionally, chemerin’s ability to recruit NK and T cells into the tumor microenvironment may make it an ideal therapy to combine with other treatments aimed at boosting the immune response, such as sipuleucel-T or checkpoint inhibition (e.g. anti-CTLA4, anti-PD1/PDL1).

2020 ◽  
Author(s):  
Jukun Song ◽  
Song He ◽  
Wei Wang ◽  
Jiaming Su ◽  
Dongbo Yuan ◽  
...  

Abstract Background Immune infiltration of Prostate cancer (PCa) was highly related to clinical outcomes. However, previous works failed to elucidate the diversity of different immune cell types that make up the function of the immune response system. The aim of the study was to uncover the composition of TIICs in PCa utilizing the CIBERSORT algorithm and further reveal the molecular characteristics of PCa subtypes. Method In the present work, we employed the CIBERSORT method to evaluate the relative proportions of immune cell profiling in PCa and adjacent samples, normal samples. We analyzed the correlation between immune cell infiltration and clinical information. The tumor-infiltrating immune cells of the TCGA PCa cohort were analyzed for the first time. The fractions of 22 immune cell types were imputed to determine the correlation between each immune cell subpopulation and clinical feature. Three types of molecular classification were identified via R-package of “CancerSubtypes”. The functional enrichment was analyzed in each subtype. The submap and TIDE algorithm were used to predict the clinical response to immune checkpoint blockade, and GDSC was employed to screen chemotherapeutic targets for the potential treatment of PCa. Results In current work, we utilized the CIBERSORT algorithm to assess the relative proportions of immune cell profiling in PCa and adjacent samples, normal samples. We investigated the correlation between immune cell infiltration and clinical data. The tumor-infiltrating immune cells in the TCGA PCa cohort were analyzed. The 22 immune cells were also calculated to determine the correlation between each immune cell subpopulation and survival and response to chemotherapy. Three types of molecular classification were identified. Each subtype has specific molecular and clinical characteristics. Meanwhile, Cluster I is defined as advanced PCa, and is more likely to respond to immunotherapy. Conclusions Our results demonstrated that differences in immune response may be important drivers of PCa progression and response to treatment. The deconvolution algorithm of gene expression microarray data by CIBERSOFT provides useful information about the immune cell composition of PCa patients. In addition, we have found a subtype of immunopositive PCa subtype and will help to explore the reasons for the poor effect of PCa on immunotherapy, and it is expected that immunotherapy will be used to guide the individualized management and treatment of PCa patients.


2013 ◽  
Vol 3 ◽  
pp. 41 ◽  
Author(s):  
Vikram S. Dogra ◽  
Bhargava K. Chinni ◽  
Keerthi S. Valluru ◽  
Jean V. Joseph ◽  
Ahmed Ghazi ◽  
...  

Objective: The objective of this study is to validate if ex-vivo multispectral photoacoustic (PA) imaging can differentiate between malignant prostate tissue, benign prostatic hyperplasia (BPH), and normal human prostate tissue. Materials and Methods: Institutional Review Board's approval was obtained for this study. A total of 30 patients undergoing prostatectomy for biopsy-confirmed prostate cancer were included in this study with informed consent. Multispectral PA imaging was performed on surgically excised prostate tissue and chromophore images that represent optical absorption of deoxyhemoglobin (dHb), oxyhemoglobin (HbO2), lipid, and water were reconstructed. After the imaging procedure is completed, malignant prostate, BPH and normal prostate regions were marked by the genitourinary pathologist on histopathology slides and digital images of marked histopathology slides were obtained. The histopathology images were co-registered with chromophore images. Region of interest (ROI) corresponding to malignant prostate, BPH and normal prostate were defined on the chromophore images. Pixel values within each ROI were then averaged to determine mean intensities of dHb, HbO2, lipid, and water. Results: Our preliminary results show that there is statistically significant difference in mean intensity of dHb (P < 0.0001) and lipid (P = 0.0251) between malignant prostate and normal prostate tissue. There was difference in mean intensity of dHb (P < 0.0001) between malignant prostate and BPH. Sensitivity, specificity, positive predictive value, and negative predictive value of our imaging system were found to be 81.3%, 96.2%, 92.9% and 89.3% respectively. Conclusion: Our preliminary results of ex-vivo human prostate study suggest that multispectral PA imaging can differentiate between malignant prostate, BPH and normal prostate tissue.


2017 ◽  
Vol 39 (2) ◽  
pp. 131-137 ◽  
Author(s):  
E E Rosenberg ◽  
G V Gerashchenko ◽  
N V Hryshchenko ◽  
L V Mevs ◽  
K A Nekrasov ◽  
...  

Background: Prostate cancer is one of the most common male cancers in Western countries and takes the third place in morbidity in Ukraine. It is a highly heterogeneous disease. Aim: To analyze relative expression levels of the TGFB1, IL1B, FOS, EFNA5, TAGLN, PLAU, and EPDR1 genes in malignant and non-malignant prostate tissues. Materials and Methods: Total RNA was isolated from 16 prostate adenomas, 37 prostate adenocarcinomas, and 29 conventionally normal prostate tissues. To analyze relative gene expression levels the quantitative real-time polymerase chain reaction was performed. Results: The significant alterations in the relative expression levels were found in all analyzed sample groups for 4 genes: FOS, EFNA5, IL1B, and TGFB1. We have found that FOS and EFNA5 were more frequently overexpressed in carcinomas with Gleason score ≤ 7, compared with adenomas. On contrary, PLAU expression levels were decreased more frequently in prostate cancers, compared with conventionally normal tissues. Noteworthy, we found positive correlation between IL1B expression level and PSA (for patients with slight PSA increase, no more than 20.0 ng/ml). Conclusion: The EFNA5, FOS, IL1B, PLAU, and TGFB1 genes that showed significant expression alterations in prostate tumors, compared with conventionally normal prostate tissue, may play role in prostate cancer development and should be further investigated.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Yunkun Yan ◽  
Jianjun Liu ◽  
Zhijian Xu ◽  
Mushi Ye ◽  
Jianchang Li

Objective. To investigate the relationship between the long noncoding RNA (lncRNA) Prostate cancer-associated transcription factors 14 (PCAT14) and the clinical characteristics of prostate cancer and immune cell infiltration. Methods. The relationship between PCAT14 expression and the clinicopathological characteristics of prostate cancer was analyzed based on The Cancer Genome Atlas (TCGA) database. Receiver operating characteristic (ROC) curves were used to evaluate the value of PCAT14 as a diagnostic marker for prostate cancer. The relationship between PCAT14 and immune cell infiltration was analyzed to explore the effect of PCAT14 on the immune-related functions of prostate cancer. Results. The ROC curve showed that PCAT14 had a significant diagnostic ability ( area   under   curve = 0.818 ) for prostate cancer. A reduced expression of PCAT14 in prostate cancer was related to T stage, N stage, primary therapy outcome, residual tumor, Gleason score, and age. The expression of PCAT14 was independently associated with the progression-free interval in prostate cancer patients. The infiltration of immune cells in prostate cancer showed a significant negative correlation between the expression of PCAT14 and plasmacytoid dendritic cells, activated dendritic cells, regulatory T cells, and neutrophils. Conclusions. PCAT14 is highly expressed in prostate cancer and is expected to be a diagnostic marker. PCAT14 might promote the development of prostate cancer through chemokines, antimicrobials, and cytokines that affect the infiltration of immune cells.


2020 ◽  
Vol 12 (10) ◽  
pp. 250-262
Author(s):  
Sheena C Kerr ◽  
Molly M Morgan ◽  
Amani A Gillette ◽  
Megan K Livingston ◽  
Karina M Lugo-Cintron ◽  
...  

Abstract The prostate tumor microenvironment (TME) is strongly immunosuppressive; it is largely driven by alteration in cell phenotypes (i.e. tumor-associated macrophages and exhausted cytotoxic T cells) that result in pro-tumorigenic conditions and tumor growth. A greater understanding into how these altered immune cell phenotypes are developed and could potentially be reversed would provide important insights into improved treatment efficacy for prostate cancer. Here, we report a microfluidic model of the prostate TME that mimics prostate ducts across various stages of prostate cancer progression, with associated stroma and immune cells. Using this platform, we exposed immune cells to a benign prostate TME or a metastatic prostate TME and investigated their metabolism, gene and cytokine expression. Immune cells exposed to the metastatic TME showed metabolic differences with a higher redox ratio indicating a switch to a more glycolytic metabolic profile. These cells also increased expression of pro-tumor response cytokines that have been shown to increase cell migration and angiogenesis such as Interleukin-1 (IL-1) a and Granulocyte-macrophage colony-stimulating factor (GM-CSF). Lastly, we observed decreased TLR, STAT signaling and TRAIL expression, suggesting that phenotypes derived from exposure to the metastatic TME could have an impaired anti-tumor response. This platform could provide a valuable tool for studying immune cell phenotypes in in vitro tumor microenvironments.


2020 ◽  
Author(s):  
Pengcheng Zhou ◽  
Jiang Wei ◽  
Lu Yuhua ◽  
Wang Lei ◽  
Zhang Yewei

Abstract Background: Hepatocellular carcinoma (HCC) is one of the most lethal malignant tumors worldwide with poor prognosis. Growing evidence has demonstrated that immune-related long non-coding RNAs (lncRNAs) are relevant to tumor microenvironment (TME) and can help to assess the effects of immunotherapy and evaluate prognosis. This study aimed to identify an immune-related lncRNA signature for the prospective assessment of immunotherapy and prognosis in HCC. Methods: HCC RNA-seq data and clinical information were downloaded from The Cancer Genome Atlas (TCGA) project database. Firstly, we used ESTIMATE to evaluate the tumor microenvironment (TME). Then, cox regression analysis was used to construct a prognostic signature and the risk score. Univariate Cox regression, multivariate Cox regression, principal components analysis (PCA), the receiver operating characteristic (ROC) curve and stratification analyses were applied to confirm. Gene set enrichment analysis (GSEA) analysis was employed to explore the biological processes and pathways. Besides, CIBERSORT was used to estimate the abundance of tumor-infiltrating immune cells (TIICs). Furthermore, the relationship between the immune-related lncRNA signature and immune checkpoint genes was investigated. Finally, quantitative real-time polymerase chain reaction (qRT-PCR) assays were used to demonstrated the expression of the six lncRNAs. Results:.We identified a six immune-related lncRNAs (MSC-AS1, AC145207.5, SNHG3, AL365203.2, AL031985.3, NRAV) with the ability to stratify patients into high-risk and low-risk groups with significantly different survival. Univariate Cox regression, multivariate Cox regression, ROC and stratification analyses confirmed that the six immune-related lncRNA signature was a novel independent prognostic factor in HCC patients. The high-risk group and low-risk group illustrated different distributions in PCA. GSEA suggested that the six immune-related lncRNA signature is involved in the immune-related biological processes and pathways. Besides, the six immune-related lncRNA signature was associated with the infiltration of immune cells. Furthermore, the six immune-related lncRNA signature was associated with the expression of critical immune genes and could predict the clinical response of immunotherapy. Finally, qRT-PCR demonstrated that the six lncRNAs were significantly differentially expressed in HCC cell lines and normal hepatic cell line. Conclusions: In summary, we identified a six immune-related lncRNA signature with the ability to predict outcome, immune cell infiltration and immunotherapy response in patients with hepatocellular carcinoma.


2021 ◽  
pp. 1-15
Author(s):  
Caibin Fan ◽  
Wei Lu ◽  
Kai Li ◽  
Chunchun Zhao ◽  
Fei Wang ◽  
...  

BACKGROUND: Metastatic castration-resistant prostate cancer (mCRPC) is the lethal stage of prostate cancer and the main cause of morbidity and mortality, which is also a potential target for immunotherapy. METHOD: In this study, using the Approximate Relative Subset of RNA Transcripts (CIBERSORT) online method, we analysed the immune cell abundance ratio of each sample in the mCRPC dataset. The EdgeR (an R package) was used to classify differentially expressed genes (DEGs). Using the Database for annotation, visualisation and interactive exploration (DAVID) online method, we performed functional enrichment analyses. STRING online database and Cytoscape tools have been used to analyse protein-protein interaction (PPI) and classify hub genes. RESULTS: The profiles of immune infiltration in mCRPC showed that Macrophages M2, Macrophages M0, T cells CD4 memory resting, T cells CD8 and Plasma cells were the main infiltration cell types in mCRPC samples. Macrophage M0 and T cell CD4 memory resting abundance ratios were correlated with clinical outcomes. We identified 1102 differentially expressed genes (DEGs) associated with the above two immune cells to further explore the underlying mechanisms. Enrichment analysis found that DEGs were substantially enriched in immune response, cell metastasis, and metabolism related categories. We identified 20 hub genes by the protein-protein interaction network analysis. Further analysis showed that three critical hub genes, CCR5, COL1A1 and CXCR3, were significantly associated with prostate cancer prognosis. CONCLUSION: Our findings revealed the pattern of immune cell infiltration in mCRPC, and identified the types and genes of immune cells correlated with clinical outcomes. A new theoretical basis for immunotherapy may be given by our results.


2021 ◽  
Vol 14 (2) ◽  
pp. 103
Author(s):  
Zohaib Rana ◽  
Joel D. A. Tyndall ◽  
Muhammad Hanif ◽  
Christian G. Hartinger ◽  
Rhonda J. Rosengren

Androgen receptor (AR)-null prostate tumors have been observed in 11–24% of patients. Histone deacetylases (HDACs) are overexpressed in prostate tumors. Therefore, HDAC inhibitors (Jazz90 and Jazz167) were examined in AR-null prostate cancer cell lines (PC3 and DU145). Both Jazz90 and Jazz167 inhibited the growth of PC3 and DU145 cells. Jazz90 and Jazz167 were more active in PC3 cells and DU145 cells in comparison to normal prostate cells (PNT1A) and showed a 2.45- and 1.30-fold selectivity and higher cytotoxicity toward DU145 cells, respectively. Jazz90 and Jazz167 reduced HDAC activity by ~60% at 50 nM in PC3 lysates. At 4 μM, Jazz90 and Jazz167 increased acetylation in PC3 cells by 6- to 8-fold. Flow cytometry studies on the cell phase distribution demonstrated that Jazz90 causes a G0/G1 arrest in AR-null cells, whereas Jazz167 leads to a G0/G1 arrest in DU145 cells. However, apoptosis only occurred at a maximum of 7% of the total cell population following compound treatments in PC3 and DU145 cells. There was a reduction in cyclin D1 and no significant changes in bcl-2 in DU145 and PC3 cells. Overall, the results showed that Jazz90 and Jazz167 function as cytostatic HDAC inhibitors in AR-null prostate cancer cells.


Sign in / Sign up

Export Citation Format

Share Document