scholarly journals NF-κB Signaling in Astrocytes Modulates Brain Inflammation and Neuronal Injury Following Sequential Exposure to Manganese and MPTP During Development and Aging

2020 ◽  
Vol 177 (2) ◽  
pp. 506-520 ◽  
Author(s):  
Sean L Hammond ◽  
Collin M Bantle ◽  
Katriana A Popichak ◽  
Katie A Wright ◽  
Delaney Thompson ◽  
...  

Abstract Chronic exposure to manganese (Mn) is associated with neuroinflammation and extrapyramidal motor deficits resembling features of Parkinson’s disease. Activation of astrocytes and microglia is implicated in neuronal injury from Mn but it is not known whether early life exposure to Mn may predispose glia to more severe inflammatory responses during aging. We therefore examined astrocyte nuclear factor kappa B (NF-κB) signaling in mediating innate immune inflammatory responses during multiple neurotoxic exposures spanning juvenile development into adulthood. MnCl2 was given in drinking water for 30-day postweaning to both wildtype mice and astrocyte-specific knockout (KO) mice lacking I kappa B kinase 2, the central upstream activator of NF-κB. Following juvenile exposure to Mn, mice were subsequently administered 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) at 4 months of age. Animals were evaluated for behavioral alterations and brain tissue was analyzed for catecholamine neurotransmitters. Stereological analysis of neuronal and glial cell counts from multiple brain regions indicated that juvenile exposure to Mn amplified glial activation and neuronal loss from MPTP exposure in the caudate-putamen and globus pallidus, as well as increased the severity of neurobehavioral deficits in open field activity assays. These alterations were prevented in astrocyte-specific I kappa B kinase 2 KO mice. Juvenile exposure to Mn increased the number of neurotoxic A1 astrocytes expressing C3 as well as the number of activated microglia in adult mice following MPTP challenge, both of which were inhibited in KO mice. These results demonstrate that exposure to Mn during juvenile development heightens the innate immune inflammatory response in glia during a subsequent neurotoxic challenge through NF-κB signaling in astrocytes.

2021 ◽  
Author(s):  
EN Moca ◽  
D Lecca ◽  
KT Hope ◽  
D Tweedie ◽  
S Sidhu ◽  
...  

ABSTRACTMicroglia maintain tissue health and can critically influence synaptic connectivity and function. During aging, microglia produce inflammatory factors, show reduced tissue surveillance, altered interactions with synapses, and prolonged responses to insults. In addition, risk genes for neurodegenerative disease are highly expressed by microglia. These findings argue that microglial function is likely to critically shape vulnerability or resilience of neurons during aging. We recently discovered that microglia in the ventral tegmental area (VTA) of young adult mice differ markedly from their counterparts in other brain regions. Whether this regional variation in microglia persists, diminishes, or increases during aging has not been determined. Here, we analyze microglia in several nuclei of the basal ganglia throughout the lifespan in mice and find that VTA microglia exhibit increased proliferation and production of inflammatory factors months prior to microglia in other basal ganglia nuclei. Comparable early proliferative responses were observed in the substantia nigra pars compacta where disease-vulnerable dopamine neurons reside. These proliferative and inflammatory responses of VTA microglia began as early at 13 months of age in mice and were not accompanied by substantial neuronal loss or changes in local astrocyte number. Finally, these region-specific responses of microglia to aging were enhanced by knockout of the fractalkine receptor (CX3CR1) and reduced by microglial ablation and repopulation, identifying two signaling axes by which region-specific responses of microglia to aging can be modulated. Collectively, these findings indicate that VTA and SNc microglia continue to differ from their counterparts in other basal ganglia nuclei during aging. Moreover, the early phenotypic changes in these cells result in “pockets” of inflammation near dopamine neurons beginning in middle age, which may be linked to enhanced vulnerability of these neurons to functional decline and degenerative disease.


Author(s):  
Antonina Kouli ◽  
Marta Camacho ◽  
Kieren Allinson ◽  
Caroline H. Williams-Gray

AbstractParkinson’s disease dementia is neuropathologically characterized by aggregates of α-synuclein (Lewy bodies) in limbic and neocortical areas of the brain with additional involvement of Alzheimer’s disease-type pathology. Whilst immune activation is well-described in Parkinson’s disease (PD), how it links to protein aggregation and its role in PD dementia has not been explored. We hypothesized that neuroinflammatory processes are a critical contributor to the pathology of PDD. To address this hypothesis, we examined 7 brain regions at postmortem from 17 PD patients with no dementia (PDND), 11 patients with PD dementia (PDD), and 14 age and sex-matched neurologically healthy controls. Digital quantification after immunohistochemical staining showed a significant increase in the severity of α-synuclein pathology in the hippocampus, entorhinal and occipitotemporal cortex of PDD compared to PDND cases. In contrast, there was no difference in either tau or amyloid-β pathology between the groups in any of the examined regions. Importantly, we found an increase in activated microglia in the amygdala of demented PD brains compared to controls which correlated significantly with the extent of α-synuclein pathology in this region. Significant infiltration of CD4+ T lymphocytes into the brain parenchyma was commonly observed in PDND and PDD cases compared to controls, in both the substantia nigra and the amygdala. Amongst PDND/PDD cases, CD4+ T cell counts in the amygdala correlated with activated microglia, α-synuclein and tau pathology. Upregulation of the pro-inflammatory cytokine interleukin 1β was also evident in the substantia nigra as well as the frontal cortex in PDND/PDD versus controls with a concomitant upregulation in Toll-like receptor 4 (TLR4) in these regions, as well as the amygdala. The evidence presented in this study show an increased immune response in limbic and cortical brain regions, including increased microglial activation, infiltration of T lymphocytes, upregulation of pro-inflammatory cytokines and TLR gene expression, which has not been previously reported in the postmortem PDD brain.


2020 ◽  
Vol 6 (46) ◽  
pp. eabc1428
Author(s):  
A. Nakano-Kobayashi ◽  
A. Fukumoto ◽  
A. Morizane ◽  
D. T. Nguyen ◽  
T. M. Le ◽  
...  

Neurodegenerative disorders are caused by progressive neuronal loss, and there is no complete treatment available yet. Neuroinflammation is a common feature across neurodegenerative disorders and implicated in the progression of neurodegeneration. Dysregulated activation of microglia causes neuroinflammation and has been highlighted as a treatment target in therapeutic strategies. Here, we identified novel therapeutic candidate ALGERNON2 (altered generation of neurons 2) and demonstrate that ALGERNON2 suppressed the production of proinflammatory cytokines and rescued neurodegeneration in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)–induced Parkinson’s disease model. ALGERNON2 stabilized cyclinD1/p21 complex, leading to up-regulation of nuclear factor erythroid 2–related factor 2 (Nrf2), which contributes to antioxidative and anti-inflammatory responses. Notably, ALGERNON2 enhanced neuronal survival in other neuroinflammatory conditions such as the transplantation of induced pluripotent stem cell–derived dopaminergic neurons into murine brains. In conclusion, we present that the microglial potentiation of the p21-Nrf2 pathway can contribute to neuronal survival and provide novel therapeutic potential for neuroinflammation-triggered neurodegeneration.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Chia-Ching Lin ◽  
Yi-Ru Shen ◽  
Chi-Chih Chang ◽  
Xiang-Yi Guo ◽  
Yun-Yun Young ◽  
...  

AbstractDifferent levels of regulatory mechanisms, including posttranscriptional regulation, are needed to elaborately regulate inflammatory responses to prevent harmful effects. Terminal uridyltransferase 7 (TUT7) controls RNA stability by adding uridines to its 3′ ends, but its function in innate immune response remains obscure. Here we reveal that TLR4 activation induces TUT7, which in turn selectively regulates the production of a subset of cytokines, including Interleukin 6 (IL-6). TUT7 regulates IL-6 expression by controlling ribonuclease Regnase-1 mRNA (encoded by Zc3h12a gene) stability. Mechanistically, TLR4 activation causes TUT7 to bind directly to the stem-loop structure on Zc3h12a 3′-UTR, thereby promotes Zc3h12a uridylation and degradation. Zc3h12a from LPS-treated TUT7-sufficient macrophages possesses increased oligo-uridylated ends with shorter poly(A) tails, whereas oligo-uridylated Zc3h12a is significantly reduced in Tut7-/- cells after TLR4 activation. Together, our findings reveal the functional role of TUT7 in sculpting TLR4-driven responses by modulating mRNA stability of a selected set of inflammatory mediators.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Boris Guennewig ◽  
Julia Lim ◽  
Lee Marshall ◽  
Andrew N. McCorkindale ◽  
Patrick J. Paasila ◽  
...  

AbstractTau pathology in Alzheimer’s disease (AD) spreads in a predictable pattern that corresponds with disease symptoms and severity. At post-mortem there are cortical regions that range from mildly to severely affected by tau pathology and neuronal loss. A comparison of the molecular signatures of these differentially affected areas within cases and between cases and controls may allow the temporal modelling of disease progression. Here we used RNA sequencing to explore differential gene expression in the mildly affected primary visual cortex and moderately affected precuneus of ten age-, gender- and RNA quality-matched post-mortem brains from AD patients and healthy controls. The two regions in AD cases had similar transcriptomic signatures but there were broader abnormalities in the precuneus consistent with the greater tau load. Both regions were characterised by upregulation of immune-related genes such as those encoding triggering receptor expressed on myeloid cells 2 and membrane spanning 4-domains A6A and milder changes in insulin/IGF1 signalling. The precuneus in AD was also characterised by changes in vesicle secretion and downregulation of the interneuronal subtype marker, somatostatin. The ‘early’ AD transcriptome is characterised by perturbations in synaptic vesicle secretion on a background of neuroimmune dysfunction. In particular, the synaptic deficits that characterise AD may begin with the somatostatin division of inhibitory neurotransmission.


2008 ◽  
Vol 100 (4) ◽  
pp. 2015-2025 ◽  
Author(s):  
Julie E. Miller ◽  
Elizabeth Spiteri ◽  
Michael C. Condro ◽  
Ryan T. Dosumu-Johnson ◽  
Daniel H. Geschwind ◽  
...  

Cognitive and motor deficits associated with language and speech are seen in humans harboring FOXP2 mutations. The neural bases for FOXP2 mutation-related deficits are thought to reside in structural abnormalities distributed across systems important for language and motor learning including the cerebral cortex, basal ganglia, and cerebellum. In these brain regions, our prior research showed that FoxP2 mRNA expression patterns are strikingly similar between developing humans and songbirds. Within the songbird brain, this pattern persists throughout life and includes the striatal subregion, Area X, that is dedicated to song development and maintenance. The persistent mRNA expression suggests a role for FoxP2 that extends beyond the formation of vocal learning circuits to their ongoing use. Because FoxP2 is a transcription factor, a role in shaping circuits likely depends on FoxP2 protein levels which might not always parallel mRNA levels. Indeed our current study shows that FoxP2 protein, like its mRNA, is acutely downregulated in mature Area X when adult males sing with some differences. Total corticosterone levels associated with the different behavioral contexts did not vary, indicating that differences in FoxP2 levels are not likely attributable to stress. Our data, together with recent reports on FoxP2's target genes, suggest that lowered FoxP2 levels may allow for expression of genes important for circuit modification and thus vocal variability.


2006 ◽  
Vol 74 (6) ◽  
pp. 3538-3546 ◽  
Author(s):  
Laura Plant ◽  
Hong Wan ◽  
Ann-Beth Jonsson

ABSTRACT The Toll-like receptors (TLRs) and the adaptor myeloid differentiation factor 88 (MyD88) are important in the innate immune defenses of the host to microbial infections. Meningococcal ligands signaling via TLRs control inflammatory responses, and stimulation can result in fulminant meningococcal sepsis. In this study, we show that the responses to nonlipooligosaccharide (non-LOS) ligands of meningococci are MyD88 dependent. An isogenic LOS-deficient mutant of the serogroup C meningococcal strain FAM20 caused fatal disease in wild type C57BL/6 mice that was not observed in MyD88−/− mice. Fatality correlated with high proinflammatory cytokine and C5a levels in serum, high neutrophil numbers in blood, and increased bacteremia at 24 h postinfection in the wild-type mice. Infection with the parent strain FAM20 resulted in fatality in 100% of the wild-type mice and 50% of the MyD88−/− mice. We conclude that both LOS and another neisserial ligand cause meningococcal sepsis in an in vivo mouse model and confirm that meningococcal LOS can act via both the MyD88- dependent and -independent pathways, while the non-LOS meningococcal ligand(s) acts only via the MyD88-dependent pathway.


2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Laurence Barrier ◽  
Bernard Fauconneau ◽  
Anastasia Noël ◽  
Sabrina Ingrand

There is evidence linking sphingolipid abnormalities, APP processing, and neuronal death in Alzheimer's disease (AD). We previously reported a strong elevation of ceramide levels in the brain of the APPSL/PS1Ki mouse model of AD, preceding the neuronal death. To extend these findings, we analyzed ceramide and related-sphingolipid contents in brain from two other mouse models (i.e., APPSLand APPSL/PS1M146L) in which the time-course of pathology is closer to that seen in most currently available models. Conversely to our previous work, ceramides did not accumulate in disease-associated brain regions (cortex and hippocampus) from both models. However, the APPSL/PS1Ki model is unique for its drastic neuronal loss coinciding with strong accumulation of neurotoxic Aβisoforms, not observed in other animal models of AD. Since there are neither neuronal loss nor toxic Aβspecies accumulation in APPSLmice, we hypothesized that it might explain the lack of ceramide accumulation, at least in this model.


Author(s):  
R. Doucette ◽  
M. Fisman ◽  
V.C. Hachinski ◽  
H. Mersky

Abstract:We examined the degree of neuronal loss from the nucleus basalis of Meynert (nbM) in two groups of Alzheimer patients differing in the degree of intellectual impairment. Significant cell loss from the nbM was found only in the more severely demented group of patients. Mean cell counts (per lOu, paraffin section) were compiled separately for the anterior, intermediate and posterior subdivisions of the human nbM in three groups of subjects: Group 1 (N = 4) was severely demented and was untestable on the Extended Scale for Dementia (ESD) for at least the last two years of life; Group 2 (N = 4) was less demented and had completed at least one ESD test within 12 months of death; Group 3 (five controls) had died of non-neurological causes. In Group 2 there was a small (but insignificant) trend toward cell loss in the anterior subdivision, and a normal complement of neurons in both the intermediate and posterior subdivisions. There was, however, significant cell loss from all subdivisions of Group 1. How these cell counts may relate to the severity of the dementia is discussed.


Sign in / Sign up

Export Citation Format

Share Document