Thermoregulatory Vasoconstriction Impairs Active Core Cooling

1995 ◽  
Vol 82 (4) ◽  
pp. 870-876. ◽  
Author(s):  
Andrea MD Kurz ◽  
Daniel I. Sessler ◽  
Franz Birnbauer ◽  
Udo M. Illievich ◽  
Christian K. Spiss

Background Many clinicians now consider hypothermia indicated during neurosurgery. Active cooling often will be required to reach target temperatures < 34 degrees C sufficiently rapidly and nearly always will be required if the target temperature is 32 degrees C. However, the efficacy even of active cooling might be impaired by thermoregulatory vasoconstriction, which reduces cutaneous heat loss and constrains metabolic heat to the core thermal compartment. The authors therefore tested the hypothesis that the efficacy of active cooling is reduced by thermoregulatory vasoconstriction. Methods Patients undergoing neurosurgical procedures with hypothermia were anesthetized with either isoflurane/nitrous oxide (n = 13) or propofol/fentanyl (n = 13) anesthesia. All were cooled using a prototype forced-air cooling device until core temperature reached 32 degrees C. Core temperature was measured in the distal esophagus. Vasoconstriction was evaluated using forearm minus fingertip skin-temperature gradients. The core temperature triggering a gradient of 0 degree C identified the vasoconstriction threshold. Results In 6 of the 13 patients given isoflurane, vasoconstriction (skin-temperature gradient = 0 degrees C) occurred at a core temperature of 34.4 +/- 0.9 degree C, 1.7 +/- 0.58 h after induction of anesthesia. Similarly, in 7 of the 13 patients given propofol, vasoconstriction occurred at a core temperature of 34.5 +/- 0.9 degree C, 1.6 +/- 0.6 h after induction of anesthesia. In the remaining patients, vasodilation continued even at core temperatures of 32 degrees C. Core cooling rates were comparable in each anesthetic group. However, patients in whom vasodilation was maintained cooled fastest. Patients in whom vasoconstriction occurred required nearly an hour longer to reach core temperatures of 33 degrees C and 32 degrees C than did those in whom vasodilation was maintained (P < 0.01). Conclusions Vasoconstriction did not produce a full core temperature "plateau," because of the extreme microenvironment provided by forced-air cooling. However, it markedly decreased the rate at which hypothermia developed. The approximately 1-h delay in reaching core temperatures of 33 degrees C and 32 degrees C could be clinically important, depending on the target temperature and the time required to reach critical portions of the operation.

2019 ◽  
Vol 316 (5) ◽  
pp. R535-R542 ◽  
Author(s):  
Tomomi Fujimoto ◽  
Bun Tsuji ◽  
Yosuke Sasaki ◽  
Kohei Dobashi ◽  
Yasuo Sengoku ◽  
...  

Hypothermia can occur during aquatic exercise despite production of significant amounts of heat by the active muscles. Because the characteristics of human thermoregulatory responses to cold during exercise have not been fully elucidated, we investigated the effect of low-intensity exercise on the shivering response to core cooling in cool water. Eight healthy young men (24 ± 3 yr) were cooled through cool water immersion while resting (rest trial) and during loadless pedaling on a water cycle ergometer (exercise trial). Before the cooling, body temperature was elevated by hot water immersion to clearly detect a core temperature at which shivering initiates. Throughout the cooling period, mean skin temperature remained around the water temperature (25°C) in both trials, whereas esophageal temperature (Tes) did not differ between the trials ( P > 0.05). The Tes at which oxygen uptake (V̇o2) rapidly increased, an index of the core temperature threshold for shivering, was lower during exercise than rest (36.2 ± 0.4°C vs. 36.5 ± 0.4°C, P < 0.05). The sensitivity of the shivering response, as indicated by the slope of the Tes-V̇o2 relation, did not differ between the trials (−441.3 ±177.4 ml·min−1·°C−1 vs. −411.8 ± 268.1 ml·min−1·°C−1, P > 0.05). The thermal sensation response to core cooling, assessed from the slope and intercept of the regression line relating Tes and thermal sensation, did not differ between the trials ( P > 0.05). These results suggest that the core temperature threshold for shivering is delayed during low-intensity exercise in cool water compared with rest although shivering sensitivity is unaffected.


2000 ◽  
Vol 92 (2) ◽  
pp. 447-447 ◽  
Author(s):  
Angela Rajek ◽  
Rainer Lenhardt ◽  
Daniel I. Sessler ◽  
Gabriele Brunner ◽  
Markus Haisjackl ◽  
...  

Background Afterdrop, defined as the precipitous reduction in core temperature after cardiopulmonary bypass, results from redistribution of body heat to inadequately warmed peripheral tissues. The authors tested two methods of ameliorating afterdrop: (1) forced-air warming of peripheral tissues and (2) nitroprusside-induced vasodilation. Methods Patients were cooled during cardiopulmonary bypass to approximately 32 degrees C and subsequently rewarmed to a nasopharyngeal temperature near 37 degrees C and a rectal temperature near 36 degrees C. Patients in the forced-air protocol (n = 20) were assigned randomly to forced-air warming or passive insulation on the legs. Active heating started with rewarming while undergoing bypass and was continued for the remainder of surgery. Patients in the nitroprusside protocol (n = 30) were assigned randomly to either a control group or sodium nitroprusside administration. Pump flow during rewarming was maintained at 2.5 l x m(-2) x min(-1) in the control patients and at 3.0 l x m(-2) x min(-1) in those assigned to sodium nitroprusside. Sodium nitroprusside was titrated to maintain a mean arterial pressure near 60 mm Hg. In all cases, a nasopharyngeal probe evaluated core (trunk and head) temperature and heat content. Peripheral compartment (arm and leg) temperature and heat content were estimated using fourth-order regressions and integration over volume from 18 intramuscular needle thermocouples, nine skin temperatures, and "deep" hand and foot temperature. Results In patients warmed with forced air, peripheral tissue temperature was higher at the end of warming and remained higher until the end of surgery. The core temperature afterdrop was reduced from 1.2+/-0.2 degrees C to 0.5+/-0.2 degrees C by forced-air warming. The duration of afterdrop also was reduced, from 50+/-11 to 27+/-14 min. In the nitroprusside group, a rectal temperature of 36 degrees C was reached after 30+/-7 min of rewarming. This was only slightly faster than the 40+/-13 min necessary in the control group. The afterdrop was 0.8+/-0.3 degrees C with nitroprusside and lasted 34+/-10 min which was similar to the 1.1+/-0.3 degrees C afterdrop that lasted 44+/-13 min in the control group. Conclusions Cutaneous warming reduced the core temperature afterdrop by 60%. However, heat-balance data indicate that this reduction resulted primarily because forced-air heating prevented the typical decrease in body heat content after discontinuation of bypass, rather than by reducing redistribution. Nitroprusside administration slightly increased peripheral tissue temperature and heat content at the end of rewarming. However, the core-to-peripheral temperature gradient was low in both groups. Consequently, there was little redistribution in either case.


1997 ◽  
Vol 83 (5) ◽  
pp. 1635-1640 ◽  
Author(s):  
M. S. L. Goheen ◽  
M. B. Ducharme ◽  
G. P. Kenny ◽  
C. E. Johnston ◽  
John Frim ◽  
...  

Goheen, M. S. L., M. B. Ducharme, G. P. Kenny, C. E. Johnston, John Frim, Gerald K. Bristow, and Gordon G. Giesbrecht.Efficacy of forced-air and inhalation rewarming by using a human model for severe hypothermia. J. Appl. Physiol. 83(5): 1635–1640, 1997.—We recently developed a nonshivering human model for severe hypothermia by using meperidine to inhibit shivering in mildly hypothermic subjects. This thermal model was used to evaluate warming techniques. On three occasions, eight subjects were immersed for ∼25 min in 9°C water. Meperidine (1.5 mg/kg) was injected before the subjects exited the water. Subjects were then removed, insulated, and rewarmed in an ambient temperature of −20°C with either 1) spontaneous rewarming (control), 2) inhalation rewarming with saturated air at ∼43°C, or 3) forced-air warming. Additional meperidine (to a maximum cumulative dose of 2.5 mg/kg) was given to maintain shivering inhibition. The core temperature afterdrop was 30–40% less during forced-air warming (0.9°C) than during control (1.4°C) and inhalation rewarming (1.2°C) ( P< 0.05). Rewarming rate was 6- to 10-fold greater during forced-air warming (2.40°C/h) than during control (0.41°C/h) and inhalation rewarming (0.23°C/h) ( P< 0.05). In nonshivering hypothermic subjects, forced-air warming provided a rewarming advantage, but inhalation rewarming did not.


1995 ◽  
Vol 82 (5) ◽  
pp. 1160-1168 ◽  
Author(s):  
Christi Cheng ◽  
Takashi Matsukawa ◽  
Daniel I. Sessler ◽  
Ozaki Makoto ◽  
Andrea Kurz ◽  
...  

Background The contribution of mean skin temperature to the thresholds for sweating and active precapillary vasodilation has been evaluated in numerous human studies. In contrast, the contribution of skin temperature to the control of cold responses such as arteriovenous shunt vasoconstriction and shivering is less well established. Accordingly, the authors tested the hypothesis that mean skin and core temperatures are linearly related at the vasoconstriction and shivering thresholds in men. Because the relation between skin and core temperatures might vary by gender, the cutaneous contribution to thermoregulatory control also was determined in women. Methods In the first portion of the study, six men participated on 5 randomly ordered days, during which mean skin temperatures were maintained near 31, 34, 35, 36, and 37 degrees C. Core hypothermia was induced by central venous infusion of cold lactated Ringer's solution sufficient to induce peripheral vasoconstriction and shivering. The core-temperature thresholds were then plotted against skin temperature and a linear regression fit to the values. The relative skin and core contributions to the control of each response were calculated from the slopes of the regression equations. In the second portion of the study, six women participated on three randomly ordered days, during which mean skin temperatures were maintained near 31, 35, and 37 degrees C. At each designated skin temperature, core hypothermia sufficient to induce peripheral vasoconstriction and/or shivering was again induced by central venous infusion of cold lactated Ringer's solution. The cutaneous contributions to control of each response were then calculated from the skin- and core-temperature pairs at the vasoconstriction and shivering thresholds. Results There was a linear relation between mean skin and core temperatures at the response thresholds in the men: r = 0.90 +/- 0.06 for vasoconstriction and r = 0.94 +/- 0.07 for shivering. Skin temperature contributed 20 +/- 6% to vasoconstriction and 19 +/- 8% to shivering. Skin temperature in the women contributed to 18 +/- 4% to vasoconstriction and 18 +/- 7% to shivering, values not differing significantly from those in men. There was no apparent correlation between the cutaneous contributions to vasoconstriction and shivering in individual volunteers. Conclusions These data indicate that skin and core temperatures contribute linearly to the control of vasoconstriction and shivering in men and that the cutaneous contributions average approximately 20% in both men and women. The same coefficients thus can be used to compensate for experimental skin temperature manipulations in men and women. However, the cutaneous contributions to each response vary among volunteers; furthermore, the contributions to the two responses vary within volunteers.


2020 ◽  
Author(s):  
tingting Ni ◽  
Zhen-feng Zhou ◽  
Bo He ◽  
Qing-he Zhou

Abstract Background: Preventing the frequent perioperative hypothermia incidents that occur during elective caesarean deliveries would be beneficial. This trial aimed at evaluating the effect of preoperative forced-air warming alongside perioperative intravenous fluid warming in women undergoing cesarean sections under spinal anesthesia.Methods: We randomly allocated135 women undergoing elective cesarean deliveries to either the intervention group (preoperative forced-air and intravenous fluid warmings, n = 69) or the control group (no active warming, n = 66). The primary outcome measure was the change from the core baseline temperature to that at the end of the procedure. Secondary outcomes included thermal comfort scores, the incidences of shivering and hypothermia (<36℃), the core temperature on arrival at the post-anesthesia care unit, neonatal axillary temperature at birth, and Apgar scores.Results: Two-way repeated measures ANOVA revealed significantly different core temperature changes (from the pre-spinal temperature to that at the end of the procedure) between groups (F = 13.022, P <0.001). The thermal comfort scores were also higher in the intervention group than in the control group (F = 9.847, P = 0.002). The overall incidence of perioperative hypothermia was significantly lower in the intervention group than in the control group (20.6% vs. 51.6%, P <0.0001).Conclusions: Warming preoperative forced-air and perioperative intravenous fluids may prevent maternal hypothermia, reduce maternal shivering, and improve maternal thermal comfort for patients undergoing cesarean sections under spinal anesthesia.Trial registration: The study was registered with the Chinese Clinical Trial Registry (registration number: ChiCTR1800019117) on October26, 2018. Keywords: Cesarean section, Spinal anesthesia, Warming


2021 ◽  
Vol 42 (Supplement_1) ◽  
Author(s):  
D Aronson ◽  
Y Nitzan ◽  
S Petcherski ◽  
E Bravo ◽  
M Habib ◽  
...  

Abstract Background Current treatment of fluid retention in heart failure (HF) relies primarily on diuretics. However, adequate decongestion is not achieved in many patients. Purpose To study the feasibility and short-term performance of a novel approach to remove fluids and sodium directly from the interstitial compartment by enhancing sweat rate. Methods We used a device designed to enhance fluid and salt loss via the eccrine sweat glands. Skin temperature in the lower body was increased to 35–38°, where the slope of the relationship between temperature and sweat production is linear. With this wearable device, the sweat evaporates instantaneously, thus avoiding the awareness of perspiration. The primary efficacy endpoint was the ability to increase skin temperature to the desired range without elevating the core temperature above normal range. A secondary efficacy endpoint was a clinically meaningful hourly sweat output, defined as ≥150 mL/h. The primary safety endpoint was any procedure-related adverse events. Results We studied 6 normal subjects and 10 HF patients with clinical evidence of congestion and median NT-proBNP of 602 pg/mL [interquartile range 427 to 1719 pg/mL]. Participants underwent 3 treatment sessions of up to 4h. Skin temperature increased to a median of 37.5°C (interquartile range 37.1–37.9°C) with the core temperature remaining unchanged. The median total weight loss during treatment was 219±67 g/h (Figure) with a range of 100–338 g/h. In 77% of cases, the average sweat rate was ≥150 mL/h. Systolic (P=0.25) and diastolic (P=0.48) blood pressure and heart rate (P=0.11) remained unchanged during the procedure. There were no significant changes in renal function and no procedure-related adverse events. Conclusion Enhancing sweat rate was safe and resulted in a clinically meaningful fluid removal and weight loss. Further evaluation of this concept is warranted. FUNDunding Acknowledgement Type of funding sources: Private company. Main funding source(s): AquaPass Inc Weight loss due to sweat


1997 ◽  
Vol 86 (3) ◽  
pp. 603-612 ◽  
Author(s):  
Takehiko Ikeda ◽  
Daniel I. Sessler ◽  
Danielle Marder ◽  
Junyu Xiong

Background Recently, liquid crystal skin-surface thermometers have become popular for intraoperative temperature monitoring. Three situations during which cutaneous liquid-crystal thermometry may poorly estimate core temperature were monitored: (1) anesthetic induction with consequent core-to-peripheral redistribution of body heat, (2) thermoregulatory vasomotion associated with sweating (precapillary dilation) and shivering (minimal capillary flow), and (3) ambient temperature variation over the clinical range from 18-26 degrees C. Methods The core-to-forehead and core-to-neck temperature difference was measured using liquid-crystal thermometers having an approximately 2 degrees C offset. Differences exceeding 0.5 degree C (a 1 degree C) temperature range) were a priori deemed potentially clinically important. Seven volunteers participated in each protocol. First, core-to-peripheral redistribution of body heat was produced by inducing propofol/desflurane anesthesia; anesthesia was then maintained for 1 h with desflurane. Second, vasodilation was produced by warming unanesthetized volunteers sufficiently to produce sweating; intense vasoconstriction was similarly produced by cooling the volunteers sufficiently to produce shivering. Third, a canopy was positioned to enclose the head, neck, and upper chest of unanesthetized volunteers. Air within the canopy was randomly set to 18, 20, 22, 24, and 26 degrees C. Results Redistribution of body heat accompanying induction of anesthesia had little effect on the core-to-forehead skin temperature difference. However, the core-to-neck skin temperature gradient decreased approximately 0.6 degree C in the hour after induction of anesthesia. Vasomotion associated with shivering and mild sweating altered the core-to-skin temperature difference only a few tenths of a degree centigrade. The absolute value of the core-to-forehead temperature difference exceeded 0.5 degree C during approximately 35% of the measurements, but the difference rarely exceeded 1 degree C. The core-to-neck temperature difference typically exceeded 0.5 degree C and frequently exceeded 1 degree C. Each 1 degree C increase in ambient temperature decreased the core-to-fore-head and core-to-neck skin temperature differences by less than 0.2 degree C. Conclusions Forehead skin temperatures were better than neck skin temperature at estimating core temperature. Core-to-neck temperature differences frequently exceeded 1 degree C (a 2 degrees C range), whereas two thirds of the core-to-forehead differences were within 0.5 degree C. The core-to-skin temperature differences were, however, only slightly altered by inducing anesthesia, vasomotor action, and typical intraoperative changes in ambient temperature.


1995 ◽  
Vol 82 (5) ◽  
pp. 1169-1180 ◽  
Author(s):  
Takashi Matsukawa ◽  
Andrea Kurz ◽  
Daniel I. Sessler ◽  
Andrew R. Bjorksten ◽  
Benjamin Merrifield ◽  
...  

Background Skin temperature is best kept constant when determining response thresholds because both skin and core temperatures contribute to thermoregulatory control. In practice, however, it is difficult to evaluate both warm and cold thresholds while maintaining constant cutaneous temperature. A recent study shows that vasoconstriction and shivering thresholds are a linear function of skin and core temperatures, with skin contributing 20 +/- 6% and 19 +/- 8%, respectively. (Skin temperature has long been known to contribute approximately 10% to the control of sweating). Using these relations, we were able to experimentally manipulate both skin and core temperatures, subsequently compensate for the changes in skin temperature, and finally report the results in terms of calculated core-temperature thresholds at a single-designated skin temperature. Methods Five volunteers were each studied on 4 days: (1) control; (2) a target blood propofol concentration of 2 micrograms/ml; (3) a target concentration of 4 micrograms/ml; and (4) a target concentration of 8 micrograms/ml. On each day, we increased skin and core temperatures sufficiently to provoke sweating. Skin and core temperatures were subsequently reduced to elicit peripheral vasoconstriction and shivering. We mathematically compensated for changes in skin temperature by using the established linear cutaneous contributions to the control of sweating (10%) and to vasoconstriction and shivering (20%). From these calculated core-temperature thresholds (at a designated skin temperature of 35.7 degrees C), the propofol concentration-response curves for the sweating, vasoconstriction, and shivering thresholds were analyzed using linear regression. We validated this new method by comparing the concentration-dependent effects of propofol with those obtained previously with an established model. Results The concentration-response slopes for sweating and vasoconstriction were virtually identical to those reported previously. Propofol significantly decreased the core temperature triggering vasoconstriction (slope = -0.6 +/- 0.1 degrees C.micrograms-1.ml-1; r2 = 0.98 +/- 0.02) and shivering (slope = -0.7 +/- 0.1 degrees C.micrograms -1.ml-1; r2 = 0.95 +/- 0.05). In contrast, increasing the blood propofol concentration increased the sweating threshold only slightly (slope = 0.1 +/- 0.1 degrees C.micrograms -1.ml-1; r2 = 0.46 +/- 0.39). Conclusions Advantages of this new model include its being nearly noninvasive and requiring relatively little core-temperature manipulation. Propofol only slightly alters the sweating threshold, but markedly reduces the vasoconstriction and shivering thresholds. Reductions in the shivering and vasoconstriction thresholds are similar; that is, the vasoconstriction-to-shivering range increases only slightly during anesthesia.


Author(s):  
Yuta Eguchi ◽  
Takanori Sugawara ◽  
Kenji Nishihara ◽  
Yujiro Tazawa ◽  
Kazufumi Tsujimoto

The Japan Atomic Energy Agency (JAEA) has been conducting the research and development (R&D) on accelerator-driven subcritical system (ADS) as a dedicated system for the transmutation of long-lived radioactive nuclides. To foster the R&D of ADS, the Transmutation Physics Experimental Facility (TEF-P) in the J-PARC project has been planned to build by JAEA [1]. The TEF-P is used minor actinide (MA) fuel which has large decay heat, so during the failure of the core cooling system, the evaluation of the core temperature increase is important. This study aims to evaluate the natural cooling characteristics of TEF-P core and to achieve a design that does not damage the core and the fuels during an accident (the failure of the core cooling system). The experiments using mockup device was performed to validate the heat transfer characteristics in the empty rectangular lattice tube. It was obtained that the actual heat transfer coefficient of empty rectangular lattice tube was about 2.2 times larger than the theoretical free convection model. It was also confirmed that the insertion of any block into the empty rectangular lattice tube could achieve the higher heat transfer coefficient. Using the heat transfer coefficient obtained by experiment results, thermal analysis was performed by the three-dimensional heat transfer analysis. As a result, the calculation results showed that the maximum core temperature will be 294 °C which is less than the design criterion of temperature, 327 °C. It was presented that the design condition which the core temperature will be below the design criterion during the failure of the core cooling system through this study.


2018 ◽  
Vol 02 (01) ◽  
pp. 019-024
Author(s):  
Muralidhar Kanchi ◽  
Prashanth Menon

Abstract Introduction Unintentional hypothermia in patients undergoing off pump coronary artery bypass grafting (OPCABG) under general anesthesia (GA) is a known complication. The wide sternotomy wound as well as low ambient operating room temperature further promotes heat loss. The changes in temperature could further be affected by the use of various vasoactive drugs by affecting the thermoregulatory response. This study is aimed to detect the temperature changes and the influence of vasoactive infusions on the temperature in the patients undergoing OPCABG under GA. Aims The main purpose of this article is to assess the core and skin temperature changes during OPCABG surgery and to assess the effect of vasoactive infusion used intraoperatively on the core temperature Settings and Design Single center, nonrandomized, open label, observational study. Methods and material After informed consent and ethical clearance from institutional review board, 151 adult patients undergoing elective OPCABG surgeries under GA were included in the study. A common anesthetic protocol and warming strategy was used in all patients. The core temperature measured with a nasopharyngeal probe and the skin temperature measured at the palmar surface of the right index finger were recorded at induction, at 30 minutes intervals thereafter, and at end surgery. The demographic variables and the duration of surgery were also recorded. The type and dose of vasoactive agents used intraoperatively were also recorded. The study population was divided post hoc into groups and subgroups for further analysis. Results All the patients showed a decrease in core temperature at end surgery. The temperature changes showed an initial exponential decrease in the first hour followed by a gradual decrease subsequently. The peripheral temperature showed a gradual increase from induction to end surgery. The temperature gradients showed a linear decrease with the core temperature and peripheral skin temperature reaching equilibrium at end surgery. The study population was divided into four groups depending on the type of vasoactive drugs received intraoperatively: vasoconstrictor (V), vasodilator (D), mixed vasoconstrictor and vasodilator (M), and no vasoactive drugs (N) group. The patients in the vasoconstrictor group had a higher core temperature at end surgery when compared with vasodilator group. Conclusions OPCABG under GA results in decrease in core temperature. The decrease in temperature is exponential in the initial 1 hour followed by a more gradual decrease. The temperature changes are possibly affected by the vasoactive drugs used intraoperatively. The effect of vasoactive drugs on core temperature is higher when used during the initial exponential decrease in temperature. However, further adequately powered randomized controlled trials may be required to establish these findings.


Sign in / Sign up

Export Citation Format

Share Document