scholarly journals Earliest filter-feeding pterosaur from the Jurassic of China and ecological evolution of Pterodactyloidea

2017 ◽  
Vol 4 (2) ◽  
pp. 160672 ◽  
Author(s):  
Chang-Fu Zhou ◽  
Ke-Qin Gao ◽  
Hongyu Yi ◽  
Jinzhuang Xue ◽  
Quanguo Li ◽  
...  

Pterosaurs were a unique clade of flying reptiles that were contemporaries of dinosaurs in Mesozoic ecosystems. The Pterodactyloidea as the most species-diverse group of pterosaurs dominated the sky during Cretaceous time, but earlier phases of their evolution remain poorly known. Here, we describe a 160 Ma filter-feeding pterosaur from western Liaoning, China, representing the geologically oldest record of the Ctenochasmatidae, a group of exclusive filter feeders characterized by an elongated snout and numerous fine teeth. The new pterosaur took the lead of a major ecological transition in pterosaur evolution from fish-catching to filter-feeding adaptation, prior to the Tithonian (145–152 Ma) diversification of the Ctenochasmatidae. Our research shows that the rise of ctenochasmatid pterosaurs was followed by the burst of eco-morphological divergence of other pterodactyloid clades, which involved a wide range of feeding adaptations that considerably altered the terrestrial ecosystems of the Cretaceous world.

Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 999 ◽  
Author(s):  
Aranza Denisse Vital-Grappin ◽  
Maria Camila Ariza-Tarazona ◽  
Valeria Montserrat Luna-Hernández ◽  
Juan Francisco Villarreal-Chiu ◽  
Juan Manuel Hernández-López ◽  
...  

Microplastics (MPs) are distributed in a wide range of aquatic and terrestrial ecosystems throughout the planet. They are known to adsorb hazardous substances and can transfer them across the trophic web. To eliminate MPs pollution in an environmentally friendly process, we propose using a photocatalytic process that can easily be implemented in wastewater treatment plants (WWTPs). As photocatalysis involves the formation of reactive species such as holes (h+), electrons (e−), hydroxyl (OH●), and superoxide ion (O2●−) radicals, it is imperative to determine the role of those species in the degradation process to design an effective photocatalytic system. However, for MPs, this information is limited in the literature. Therefore, we present such reactive species’ role in the degradation of high-density polyethylene (HDPE) MPs using C,N-TiO2. Tert-butanol, isopropyl alcohol (IPA), Tiron, and Cu(NO3)2 were confirmed as adequate OH●, h+, O2●− and e− scavengers. These results revealed for the first time that the formation of free OH● through the pathways involving the photogenerated e− plays an essential role in the MPs’ degradation. Furthermore, the degradation behaviors observed when h+ and O2●− were removed from the reaction system suggest that these species can also perform the initiating step of degradation.


2012 ◽  
Vol 9 (10) ◽  
pp. 3721-3727 ◽  
Author(s):  
J. J. Wang ◽  
T. W. Ng ◽  
Q. Zhang ◽  
X. B. Yang ◽  
R. A. Dahlgren ◽  
...  

Abstract. C1/C2 organohalogens (organohalogens with one or two carbon atoms) can have significant environmental toxicity and ecological impact, such as carcinogenesis, ozone depletion and global warming. Natural halogenation processes have been identified for a wide range of natural organic matter, including soils, plant and animal debris, algae, and fungi. Yet, few have considered these organohalogens generated from the ubiquitous bacteria, one of the largest biomass pools on earth. Here, we report and confirm the formation of chloroform (CHCl3) dichloro-acetonitrile (CHCl2CN), chloral hydrate (CCl3CH(OH)2) and their brominated analogues by direct halogenation of seven strains of common bacteria and nine cellular monomers. Comparing different major C stocks during litter decomposition stages in terrestrial ecosystems, from plant litter, decomposed litter, to bacteria, we found increasing reactivity for nitrogenous organohalogen yield with decreasing C/N ratio. Our results raise the possibility that natural halogenation of bacteria represents a significant and overlooked contribution to global organohalogen burdens. As bacteria are decomposers that alter the C quality by transforming organic matter pools from high to low C/N ratio and constitute a large organic N pool, the bacterial activity is expected to affect the C, N, and halogen cycling through natural halogenation reactions.


2020 ◽  
Author(s):  
Jan De Pue ◽  
José Miguel Barrios ◽  
Fabienne Maignan ◽  
Liyang Liu ◽  
Philippe Ciais ◽  
...  

<p>The annual phenological cycle is of key importance for the carbon and energy fluxes in terrestrial ecosystems. Although the processes controlling budburst and leaf senescence are fairly well known, the connection between plant phenology and the carbon fluxes remains a challenging aspect in land surface modelling (LSM). In this study, the modelling strategies of three well stablished LSM are compared. The LSM considered in this study were: ORCHIDEE, ISBA-A-gs and the model driving the LSA-SAF evapotranspiration product (https://landsaf.ipma.pt). The latter model does not simulate the carbon fluxes but focuses on the computation of evapotranspiration and energy fluxes.<br>The phenological cycle is simulated explicitly in the ORCHIDEE model, using empirical relations based on temperature sum, water availability, and other variables. In the ISBA-A-gs model, phenology and LAI development is fully photosynthesis-driven. The phenology in the LSA-SAF model is driven by remote sensing forcing variables, such as LAI observations. Alternatively, the assimilation of remote sensing LAI products is a convenient method to improve the simulated phenological cycle in land surface models. A dedicated module for this operation is available in ISBA-A-gs.<br>Simulations were performed over a wide range of climatological conditions and plant functional types. The results were then validated with in-situ measurements conducted at Fluxnet stations. In addition to the comparison between measured and modelled carbon fluxes, the validation in this study included the intra-annual variation in the simulated phenological cycle.</p>


2013 ◽  
Vol 50 (9) ◽  
pp. 967-977 ◽  
Author(s):  
Charles Umbanhowar ◽  
Philip Camill ◽  
Mark Edlund ◽  
Christoph Geiss ◽  
Wesley Durham ◽  
...  

Intensified warming in the Arctic and Subarctic is resulting in a wide range of changes in the extent, productivity, and composition of aquatic and terrestrial ecosystems. Analysis of remote sensing imagery has documented regional changes in the number and area of ponds and lakes as well as expanding cover of shrubs and small trees in uplands. To better understand long-term changes across the edaphic gradient, we compared the number and area of water bodies and dry barrens (>100 m2) between 1956 (aerial photographs) and 2008–2011 (high-resolution satellite images) for eight ∼25 km2 sites near Nejanilini Lake, Manitoba (59.559°N, 97.715°W). In the modern landscape, the number of water bodies and barrens were similar (1162 versus 1297, respectively), but water bodies were larger (mean 3.1 × 104 versus 681 m2, respectively) and represented 17% of surface area compared with 0.4% for barrens. Over the past 60 years, total surface area of water did not change significantly (16.7%–17.1%) despite a ∼30% decrease in numbers of small (<1000 m2) water bodies. However, the number and area of barrens decreased (55% and 67%, respectively) across all size classes. These changes are consistent with Arctic greening in response to increasing temperature and precipitation. Loss of small water bodies suggests that wet tundra areas may be drying, which, if true, may have important implications for carbon balance. Our observations may be the result of changes in winter conditions in combination with low permafrost ice content in the region, in part explaining regional variations in responses to climate change.


Agronomy ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1321
Author(s):  
Francisco Rocha ◽  
Manuel Esteban Lucas-Borja ◽  
Paulo Pereira ◽  
Miriam Muñoz-Rojas

Soil salinization poses an important threat to terrestrial ecosystems and is expected to increase as a consequence of climate change and anthropogenic pressures. Conventional methods such as salt-leaching or application of soil amendments, or nature-based solutions (NBSs) such as phytoremediation, have been widely adopted with contrasting results. The use of cyanobacteria for improving soil conditions has emerged as a novel biotechnological tool for ecosystem restoration due to the unique features of these organisms, e.g., ability to fix carbon and nitrogen and promote soil stabilisation. Cyanobacteria distribute over a wide range of salt concentrations and several species can adapt to fluctuating salinity conditions. Their application in agricultural saline soil remediation has been demonstrated, mostly in laboratory studies, but there is a lack of research regarding their use in natural ecosystems restoration. In this article, we provide an overview of the current knowledge on cyanobacteria in the context of ecosystem restoration. Examples of the application of cyanobacteria in alleviating salt-stress in plants and soils are presented. Furthermore, we acknowledge gaps regarding the extensive application of cyanobacteria in salt-affected soils remediation and discuss the challenges of NBSs in salt-affected soils restoration.


2020 ◽  
Vol 287 (1938) ◽  
pp. 20202085
Author(s):  
Jesse J. Hennekam ◽  
Roger B. J. Benson ◽  
Victoria L. Herridge ◽  
Nathan Jeffery ◽  
Enric Torres-Roig ◽  
...  

Insular gigantism—evolutionary increases in body size from small-bodied mainland ancestors—is a conceptually significant, but poorly studied, evolutionary phenomenon. Gigantism is widespread on Mediterranean islands, particularly among fossil and extant dormice. These include an extant giant population of Eliomys quercinus on Formentera, the giant Balearic genus † Hypnomys and the exceptionally large † Leithia melitensis of Pleistocene Sicily. We quantified patterns of cranial and mandibular shape and their relationships to head size (allometry) among mainland and insular dormouse populations, asking to what extent the morphology of island giants is explained by allometry. We find that gigantism in dormice is not simply an extrapolation of the allometric trajectory of their mainland relatives. Instead, a large portion of their distinctive cranial and mandibular morphology resulted from the population- or species-specific evolutionary shape changes. Our findings suggest that body size increases in insular giant dormice were accompanied by the evolutionary divergence of feeding adaptations. This complements other evidence of ecological divergence in these taxa, which span predominantly faunivorous to herbivorous diets. Our findings suggest that insular gigantism involves context-dependent phenotypic modifications, underscoring the highly distinctive nature of island faunas.


Science ◽  
2019 ◽  
Vol 366 (6471) ◽  
pp. eaaw9256 ◽  
Author(s):  
Michael D. Morecroft ◽  
Simon Duffield ◽  
Mike Harley ◽  
James W. Pearce-Higgins ◽  
Nicola Stevens ◽  
...  

Natural and seminatural ecosystems must be at the forefront of efforts to mitigate and adapt to climate change. In the urgency of current circumstances, ecosystem restoration represents a range of available, efficient, and effective solutions to cut net greenhouse gas emissions and adapt to climate change. Although mitigation success can be measured by monitoring changing fluxes of greenhouse gases, adaptation is more complicated to measure, and reductions in a wide range of risks for biodiversity and people must be evaluated. Progress has been made in the monitoring and evaluation of adaptation and mitigation measures, but more emphasis on testing the effectiveness of proposed strategies is necessary. It is essential to take an integrated view of mitigation, adaptation, biodiversity, and the needs of people, to realize potential synergies and avoid conflict between different objectives.


2016 ◽  
Vol 371 (1703) ◽  
pp. 20150308 ◽  
Author(s):  
Immaculada Oliveras ◽  
Yadvinder Malhi

The forest–savannah transition is the most widespread ecotone in tropical areas, separating two of the most productive terrestrial ecosystems. Here, we review current understanding of the factors that shape this transition, and how it may change under various drivers of local or global change. At broadest scales, the location of the transition is shaped by water availability, mediated strongly at local scales by fire regimes, herbivory pressure and spatial variation in soil properties. The frequently dynamic nature of this transition suggests that forest and savannah can exist as alternative stable states, maintained and separated by fire–grass feedbacks and tree shade–fire suppression feedback. However, this theory is still contested and the relative contributions of the main biotic and abiotic drivers and their interactions are yet not fully understood. These drivers interplay with a wide range of ecological processes and attributes at the global, continental, regional and local scales. The evolutionary history of the biotic and abiotic drivers and processes plays an important role in the current distributions of these transitions as well as in their species composition and ecosystem functioning. This ecotone can be sensitive to shifts in climate and other driving factors, but is also potentially stabilized by negative feedback processes. There is abundant evidence that these transitions are shifting under contemporary global and local changes, but the direction of shift varies according to region. However, it still remains uncertain how these transitions will respond to rapid and multi-faceted ongoing current changes, and how increasing human influence will interact with these shifts. This article is part of the themed issue ‘Tropical grassy biomes: linking ecology, human use and conservation’.


2021 ◽  
Vol 13 (7) ◽  
pp. 3762
Author(s):  
Tiago Teixeira da Silva Siqueira ◽  
Danielle Galliano ◽  
Geneviève Nguyen ◽  
Ferenc Istvan Bánkuti

Understanding the relationship between the organizational characteristics of a farm and its environmental performance is essential to support the agro-ecological transition of farms. This is even more important as very few studies on the subject have been undertaken and as there is a growing diversity of organizational forms of farms that differ from the traditional family model. This paper proposes a comprehensively integrated approach of dairy farms in Brazil. A case study of six archetypes of farms with contrasted organizational characteristics is developed to explore the relations between, on the one hand, farms’ organizational structure and governance, and on the other hand, the adoption of agri-environmental practices. Results show that the adoption of agri-environmental practices varies across the wide range of farm’s organizational forms—from the family to the industrial models. Farms with limited internal resources depend more specifically on external sectoral or territorial resources to implement environmental practices. If the environment is conducive to the creation of incentives and coordination mechanisms underlying learning processes, farms will adopt agri-environmental practices, regardless of they are organized. The creation of local cooperatives, farmer’s networks and universities extension programs can strengthen farmers’ absorption, adaptation and transformation capacities and boost the adoption of environmental practices. Finally, considering farms as heterogeneous organizational forms in terms of human capital, resources, market, and informational access is essential to accelerate the agroecological transition.


2021 ◽  
Vol 20 (6) ◽  
pp. 837-845
Author(s):  
Ingeborg Haug ◽  
Sabrina Setaro ◽  
Juan Pablo Suárez

AbstractTropical dry forests are an intricate ecosystem with special adaptations to periods of drought. Arbuscular mycorrhizal fungi (AMF) are essential for plant survival in all terrestrial ecosystems but might be of even greater importance in dry forests as plant growth is limited due to nutrient and water deficiency during the dry season. Tropical dry forests in Ecuador are highly endangered, but studies about AMF communities are scarce. We investigated the AMF community of a premontane semi-deciduous dry forest in South Ecuador during the dry season. We estimated AMF diversity, distribution, and composition of the study site based on operational taxonomic units (OTUs) and compared the results to those from the tropical montane rainforest and páramo in South Ecuador. OTU delimitation was based on part of the small ribosomal subunit obtained by cloning and Sanger sequencing. Nearly all OTUs were Glomeraceae. The four frequent OTUs were Glomus, and comparison with the MaarjAM database revealed these to be globally distributed with a wide range of ecological adaptations. Several OTUs are shared with virtual taxa from dry forests in Africa. Ordination analysis of AMF communities from the tropical dry and montane rainforests in South Ecuador revealed a unique AMF community in the dry forest with only few overlapping OTUs. Most OTUs that were found in both dry and rainforests and on the two continents were globally distributed Glomus.


Sign in / Sign up

Export Citation Format

Share Document