scholarly journals Infection rate of Aedes aegypti mosquitoes with dengue virus depends on the interaction between temperature and mosquito genotype

2017 ◽  
Vol 284 (1864) ◽  
pp. 20171506 ◽  
Author(s):  
A. Gloria-Soria ◽  
P. M. Armstrong ◽  
J. R. Powell ◽  
P. E. Turner

Dengue fever is the most prevalent arthropod-transmitted viral disease worldwide, with endemic transmission restricted to tropical and subtropical regions of different temperature profiles. Temperature is epidemiologically relevant because it affects dengue infection rates in Aedes aegypti mosquitoes, the major vector of the dengue virus (DENV). Aedes aegypti populations are also known to vary in competence for different DENV genotypes. We assessed the effects of mosquito and virus genotype on DENV infection in the context of temperature by challenging Ae. aegypti from two locations in Vietnam, which differ in temperature regimes, with two isolates of DENV-2 collected from the same two localities, followed by incubation at 25, 27 or 32°C for 10 days. Genotyping of the mosquito populations and virus isolates confirmed that each group was genetically distinct. Extrinsic incubation temperature (EIT) and DENV-2 genotype had a direct effect on the infection rate, consistent with previous studies. However, our results show that the EIT impacts the infection rate differently in each mosquito population, indicating a genotype by environment interaction. These results suggest that the magnitude of DENV epidemics may not only depend on the virus and mosquito genotypes present, but also on how they interact with local temperature. This information should be considered when estimating vector competence of local and introduced mosquito populations during disease risk evaluation.

2015 ◽  
Vol 2015 ◽  
pp. 1-16 ◽  
Author(s):  
Jorge Cime-Castillo ◽  
Philippe Delannoy ◽  
Guillermo Mendoza-Hernández ◽  
Verónica Monroy-Martínez ◽  
Anne Harduin-Lepers ◽  
...  

Dengue fever (DF) is the most prevalent arthropod-borne viral disease which affects humans. DF is caused by the four dengue virus (DENV) serotypes, which are transmitted to the host by the mosquitoAedes aegyptithat has key roles in DENV infection, replication, and viral transmission (vector competence). Mosquito saliva also plays an important role during DENV transmission. In this study, we detected the presence of sialic acid (Sia) inAedes aegyptitissues, which may have an important role during DENV-vector competence. We also identified genome sequences encoding enzymes involved in Sia pathways. The cDNA forAedes aegyptiCMP-Sia synthase (CSAS) was amplified, cloned, and functionally evaluated via the complementation of LEC29.Lec32 CSAS-deficient CHO cells.AedesCSAS-transfected LEC29.Lec32 cells were able to express Sia moieties on the cell surface. Sequences related toα-2,6-sialyltransferase were detected in theAedes aegyptigenome. Likewise, we identified Sia-α-2,6-DENV interactions in different mosquito tissues. In addition, we evaluated the possible role of sialylated molecules in a salivary gland extract during DENV internalization in mammalian cells. The knowledge of early DENV-host interactions could facilitate a better understanding of viral tropism and pathogenesis to allow the development of new strategies for controlling DENV transmission.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Michael Amoa-Bosompem ◽  
Daisuke Kobayashi ◽  
Kentaro Itokawa ◽  
Katsunori Murota ◽  
Astri Nur Faizah ◽  
...  

Abstract Background Dengue virus (DENV) is a mosquito-borne arbovirus transmitted by Aedes mosquitoes, but is not endemic in all areas where this vector is found. For example, the relatively sparse distribution of cases in West Africa is generally attributed to the refractory nature of West African Aedes aegypti (Ae. aegypti) to DENV infection, and particularly the forest-dwelling Ae. aegypti formosus. However, recent studies have shown these mosquitoes to be competent vectors within some West African countries that have suffered outbreaks in the past, such as Senegal. There is however little information on the vector competence of the Ae. aegypti in West African countries such as Ghana with no reported outbreaks. Methods This study examined the vector competence of 4 Ae. aegypti colonies from urban, semi-urban, and two rural locations in Ghana in transmitting DENV serotypes 1 and 2, using a single colony from Vietnam as control. Midgut infection and virus dissemination were determined by quantitative reverse transcription polymerase chain reaction (qRT-PCR), while the presence and concentration of DENV in the saliva of infectious mosquitoes was determined by the focus forming assay. Results There were significant differences in the colonies’ susceptibility to virus infection, dissemination, and transmission. All examined Ghanaian mosquitoes were refractory to infection by DENV serotype 2, while some colonies exhibited potential to transmit DENV serotype 1. None of the tested colonies were as competent as the control group colony. Conclusions These findings give insight into the possible risk of outbreaks, particularly in the urban areas in the south of Ghana, and highlight the need for continuous surveillance to determine the transmission status and outbreak risk. This study also highlights the need to prevent importation of different DENV strains and potential invasion of new highly vector-competent Ae. aegypti strains, particularly around the ports of entry. Graphic Abstract


ENTOMON ◽  
2019 ◽  
Vol 44 (3) ◽  
pp. 213-218
Author(s):  
Suresh Chand Kaushik ◽  
Sukhvir Singh ◽  
Purnima Srivastava ◽  
R. Rajendran

Detection of viruses in human sera particularly in endemic areas is cumbersome and laborious. Therefore, an alternative approach, Immuno-fluorescence assay (IFA) was performed to determine dengue virus (DENV) positivity in mosquitoes. A total of 1055 adult Aedes aegypti female mosquitoes were tested for IFA test against DENV. Minimum infection rate (MIR) for DENV was found higher during August to November 2016 ranging from 10.75 to 20.83. The average yearly MIR was about 6.64. Higher MIR for Ae. aegypti was found in Sarfabad, Noida (12.71) and Khoda Colony, Ghaziabad (11.90). Minimum MIR (4.67) was observed in Sanjay colony (Faridabad). The main contribution of this study resides in the development of a more suitable monitoring system for early detection of viral circulation and to prioritize early intervention in the non-transmission season.


2020 ◽  
Vol 21 (20) ◽  
pp. 7520
Author(s):  
Lucky R. Runtuwene ◽  
Shuichi Kawashima ◽  
Victor D. Pijoh ◽  
Josef S. B. Tuda ◽  
Kyoko Hayashida ◽  
...  

Efforts to determine the mosquito genes that affect dengue virus replication have identified a number of candidates that positively or negatively modify amplification in the invertebrate host. We used deep sequencing to compare the differential transcript abundances in Aedes aegypti 14 days post dengue infection to those of uninfected A. aegypti. The gene lethal(2)-essential-for-life [l(2)efl], which encodes a member of the heat shock 20 protein (HSP20) family, was upregulated following dengue virus type 2 (DENV-2) infection in vivo. The transcripts of this gene did not exhibit differential accumulation in mosquitoes exposed to insecticides or pollutants. The induction and overexpression of l(2)efl gene products using poly(I:C) resulted in decreased DENV-2 replication in the cell line. In contrast, the RNAi-mediated suppression of l(2)efl gene products resulted in enhanced DENV-2 replication, but this enhancement occurred only if multiple l(2)efl genes were suppressed. l(2)efl homologs induce the phosphorylation of eukaryotic initiation factor 2α (eIF2α) in the fruit fly Drosophila melanogaster, and we confirmed this finding in the cell line. However, the mechanism by which l(2)efl phosphorylates eIF2α remains unclear. We conclude that l(2)efl encodes a potential anti-dengue protein in the vector mosquito.


2017 ◽  
Vol 115 (2) ◽  
pp. 361-366 ◽  
Author(s):  
Lauren B. Carrington ◽  
Bich Chau Nguyen Tran ◽  
Nhat Thanh Hoang Le ◽  
Tai Thi Hue Luong ◽  
Truong Thanh Nguyen ◽  
...  

The wMel strain of Wolbachia can reduce the permissiveness of Aedes aegypti mosquitoes to disseminated arboviral infections. Here, we report that wMel-infected Ae. aegypti (Ho Chi Minh City background), when directly blood-fed on 141 viremic dengue patients, have lower dengue virus (DENV) transmission potential and have a longer extrinsic incubation period than their wild-type counterparts. The wMel-infected mosquitoes that are field-reared have even greater relative resistance to DENV infection when fed on patient-derived viremic blood meals. This is explained by an increased susceptibility of field-reared wild-type mosquitoes to infection than laboratory-reared counterparts. Collectively, these field- and clinically relevant findings support the continued careful field-testing of wMel introgression for the biocontrol of Ae. aegypti-born arboviruses.


2022 ◽  
Vol 103 (1) ◽  
Author(s):  
Michael Leitner ◽  
Kayvan Etebari ◽  
Sassan Asgari

Mosquito-borne flaviviruses are responsible for viral infections and represent a considerable public health burden. Aedes aegypti is the principal vector of dengue virus (DENV), therefore understanding the intrinsic virus–host interactions is vital, particularly in the presence of the endosymbiont Wolbachia, which blocks virus replication in mosquitoes. Here, we examined the transcriptional response of Wolbachia -transinfected Ae. aegypti Aag2 cells to DENV infection. We identified differentially expressed immune genes that play a key role in the activation of anti-viral defence such as the Toll and immune deficiency pathways. Further, genes encoding cytosine and N6-adenosine methyltransferases and SUMOylation, involved in post-transcriptional modifications, an antioxidant enzyme, and heat-shock response were up-regulated at the early stages of DENV infection and are reported here for the first time. Additionally, several long non-coding RNAs were among the differentially regulated genes. Our results provide insight into Wolbachia -transinfected Ae. aegypti’s initial virus recognition and transcriptional response to DENV infection.


2013 ◽  
Vol 112 (7) ◽  
pp. 2627-2637 ◽  
Author(s):  
Shakti S. Charan ◽  
Kiran D. Pawar ◽  
David W. Severson ◽  
Milind S. Patole ◽  
Yogesh S. Shouche

2014 ◽  
Vol 8 (07) ◽  
pp. 876-884 ◽  
Author(s):  
Diana Carolina Quintero-Gil ◽  
Marta Ospina ◽  
Jorge Emilio Osorio-Benitez ◽  
Marlen Martinez-Gutierrez

Introduction: Different dengue virus (DENV) serotypes have been associated with greater epidemic potential. In turn, the increased frequency in cases of severe forms of dengue has been associated with the cocirculation of several serotypes. Because Colombia is a country with an endemic presence of all four DENV serotypes, the aim of this study was to evaluate the in vivo and in vitro replication of the DENV-2 and DENV-3 strains under individual infection and coinfection conditions. Methodology: C6/36HT cells were infected with the two strains individually or simultaneously (coinfection). Replication capacity was evaluated by RT-qPCR, and the effects on cell viability were assessed with an MTT (3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Additionally, Aedes aegypti mosquitoes were artificially fed the two strains of each serotype individually or simultaneously. The viral genomes were quantified by RT-qPCR and the survival of the infected mosquitoes was compared to that of uninfected controls. Results: In single infections, three strains significantly affected C6/36HT cell viability, but no significant differences were found in the replication capacities of the strains of the same serotype. In the in vivo infections, mosquito survival was not affected, and no significant differences in replication between strains of the same serotype were found. Finally, in coinfections, serotype 2 replicated with a thousandfold greater efficiency than serotype 3 did both in vitro and in vivo. Conclusions: Due to the cocirculation of serotypes in endemic regions, further studies of coinfections in a natural environment would further an understanding of the transmission dynamics that affect DENV infection epidemiology.


Author(s):  
Panpim Thongsripong ◽  
Dawn M Wesson

Abstract Dengue virus infection, transmitted via mosquito bites, poses a substantial risk to global public health. Studies suggest that the mosquito’s microbial community can profoundly influence vector-borne pathogen transmissions, including dengue virus. Ascogregarina culicis (Ross) of the phylum Apicomplexa is among the most common parasites of Aedes aegypti (Linnaeus), the principal vector of dengue. Despite a high prevalence worldwide, including in the areas where dengue is endemic, the impact of A. culicis on Ae. aegypti vector competence for dengue virus is unknown. This study aimed to investigate the effects of A. culicis infection on mosquito size and fitness, as measured by wing length, and the susceptibility to dengue virus infection in Ae. aegypti. Our results showed that there was no statistically significant difference in wing lengths between Ae. aegypti infected and not infected with A. culicis. Furthermore, A. culicis infection did not significantly affect dengue virus infection or disseminated infection rate. However, there was a significant association between shorter wings and higher dengue virus infection rate, whereby a 0.1-mm increase in wing length decreased the odds of the mosquito being infected by 32%. Thus, based on our result, A. culicis infection does not influence the body size and dengue virus infection in Ae. aegypti. This study helps to shed light on a common but neglected eukaryotic mosquito parasite.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2772-2772
Author(s):  
Khao T.D. Thai ◽  
Josta A. Wismeijer ◽  
Catrien M. Zumpolle ◽  
Menno D. de Jong ◽  
Peter J. Vde ries ◽  
...  

Abstract Abstract 2772 Introduction: One of the characteristic features of dengue virus (DENV) infection is the occurrence of leukopenia and thrombocytopenia, probably resulting from virus induced bone marrow suppression. Despite the general bone marrow suppression, polyclonal peripheral blood plasmacytosis has occasionally been described in DENV infected patients. The frequency of peripheral blood (PB) plasmacytosis in patients with dengue infection, the origin of these plasma cells (PCs) and the mechanisms by which they appear in the blood are not known. We initiated this prospective observational study to quantify and describe the kinetics and phenotype of PB plasmacells (PCs) in these patients. Methods: Morphological examination of the peripheral blood smear was performed in 35 sequential returned travelers suspected of DENV infection, with a history of less than 14 days of fever. Flow cytometric (FC) analysis for the characterization and immunophenotyping of lymphocyte subsets and PCs was performed in 31 patients. Follow-up samples were available for 8 patients. Results: Our results show that PB plasmacytosis is a very common hematological finding in DENV infection, with extreme values of up to 36% of total white blood cells in some patients. Depending on the number of days since the onset of fever at presentation, PB plasmacytosis was observed in 64% to 73% of 28 patients with confirmed DENV infection, and in none of 7 patients with other febrile illnesses. PB plasmacytosis was the most pronounced before 7 days after onset of illness and declined rapidly thereafter, to completely disappear after 14 days of illness. The median percentage of PCs at day 7 was 2.5% (range 0–36%; 25–75 interquartile range: 0–8%). The median percentage of PCs was significantly higher in patients with secondary DENV infection than in patients with primary infection (4.5% versus 1.0%; p=0.05). Viral RNA was detectable in 18 of 28 DENV infected patients with a highly variable viral load, but there was no correlation between viral load and percentage of PCs. We found an excellent correlation between percentage of PCs as assessed by morphology and by flow cytometry (r2= 0.85). The majority of CD138+ PCs (89%) had a shared immunophenotype (CD45+/CD19−/CD56−), which differed from normal plasmacells which are generally CD19+. In all cases the PCs were polyclonal. Conclusion: PB plasmacytosis, characterized by a transient presence of polyclonal PCs in the circulation, is a common event in DENV infection and is probably the result of a vigorous humoral immune response to dengue. With an increasing number of travelers to areas where dengue virus is endemic, it is important also for hematologists to recognize this benign cause of sometimes extreme plasmacytosis, for which no invasive procedures such as bone marrow examinations are needed. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document