scholarly journals Growth and metabolism in the Antarctic brachiopod Liothyrella uva

1997 ◽  
Vol 352 (1355) ◽  
pp. 851-858 ◽  
Author(s):  
Lloyd S. Peck ◽  
Simon Brockington ◽  
Thomas Brey

Summer and winter growth rates were assessed separately for a population of the Antarctic brachiopod Liothyrella uva between early January 1992 and December 1993. Annual shell growth rates (1.6–2.3 mm yr −1 for a 5 mm individual; 0.96–1.44 mm −1 for a 20 mm specimen) were two to six times slower than those reported for temperate species. Growth in specimens less than 20 mm in length was faster in 1992 than in 1993, although differences between years over the whole size range were not significant. Surprisingly, growth was much faster in winter periods than during the summers. A 5 mm long individual grew five times faster in winter than in summer, and for a 20 mm long specimen the difference was 13 times. This runs contrary to current ideas on the effects of seasonality on the biology of polar marine invertebrates, but may be an effect of maximizing the efficiency of resource utilization. Comparisons with previous work showed shell growth to be decoupled from periods of tissue mass increase, and also from the main period of phytoplankton productivity. Oxygen consumption of 75 of the specimens used in the growth study was measured to test the hypothesis that basal metabolic rates should be inversely correlated with growth rates. Unexpectedly, an analysis of residuals produced no significant relationship, positive or negative, between growth rate and basal metabolism ( F = 1.37, p =0.25, n = 75).

2001 ◽  
Vol 58 (2) ◽  
pp. 386-393 ◽  
Author(s):  
John A Sweka ◽  
Kyle J Hartman

Brook trout (Salvelinus fontinalis) were held in an artificial stream to observe the influence of turbidity on mean daily consumption and specific growth rates. Treatment turbidity levels ranged from clear (<3.0 nephelometric turbidity units (NTU)) to very turbid water (> 40 NTU). Observed mean daily specific consumption rates were standardized to the mean weight of all brook trout tested. Turbidity had no significant effect on mean daily consumption, but specific growth rates decreased significantly as turbidity increased. Brook trout in turbid water became more active and switched foraging strategies from drift feeding to active searching. This switch was energetically costly and resulted in lower specific growth rates in turbid water as compared with clear water. Bioenergetics simulations were run to compare observed growth with that predicted by the model. Observed growth values fell below those predicted by the model and the difference increased as turbidity increased. Abiotic factors, such as turbidity, which bring about changes in the activity rates of fish, can have implications for the accuracy of predicted growth by bioenergetics models.


2007 ◽  
Vol 24 (2) ◽  
pp. 457-462 ◽  
Author(s):  
Lucélia Donatti ◽  
Edith Fanta

The Antarctic fish Trematomus newnesi (Boulenger, 1902) occurs from benthic to pelagic habitats, in seasonally and daily varied photic conditions that induce retinomotor movements. Fish were experimentally kept under constant darkness or light, and 12Light/12Dark for seven days. The retinomotor movement of the pigment epithelium was established through the pigment index, while that of the cones was calculated as the length of the myoid. The retinomotor movement of the pigment epithelium in T.newnesi,revealed that the adaptation to constant light occurred in the one hour of exposure, remaining constant for the next seven days. However, the adaptation to constant darkness, was slower. The difference between the mean values of the pigment indices in the time intervals of sampling was significant in the first hours of the experiment, and only after six hours they were not significant any more. The myoid of cones became elongated in darkness and contracted in light. In the experiments where T.newnesiwas exposed initially to 12 hours light followed by 12 hours darkness 12 was evidenced that the speed and intensity of the retinomotor movements was higher when darkness changed into light, than when light changed into darkness.


MRS Advances ◽  
2015 ◽  
Vol 1 (23) ◽  
pp. 1703-1708 ◽  
Author(s):  
M. Yako ◽  
N. J. Kawai ◽  
Y. Mizuno ◽  
K. Wada

ABSTRACTThe kinetics of Ge lateral overgrowth on SiO2 with line-shaped Si seeds is examined. The growth process is described by the difference between the growth rates of Ge on (100) planes (GR100) and <311> facets (GR311). The theoretical calculations well reproduce the growth kinetics. It is shown that narrowing the line-seeds helps Ge coalescence and flat film formation.


MAUSAM ◽  
2022 ◽  
Vol 53 (3) ◽  
pp. 349-358
Author(s):  
R. P. KANE

The 12-monthly running means of CFC-11 and CFC-12 were examined for 1977-1992. As observed by earlier workers, during 1977-1988, there was a rapid, almost linear increase of these compounds, ~70% in the northern and ~77% in the southern hemisphere. From 1988 up to 1992, growth rates were slower, more so for CFC-11 in the northern hemisphere. Superposed on this pattern were QBO, QTO (Quasi-Biennial and Quasi-Triennial Oscillations). A spectral analysis of the various series indicated the following. The 50 hPa low latitude zonal wind had one prominent QBO peak at 2.58 years and much smaller peaks at 2.00 (QBO) and 5.1 years. The Southern oscillation index represented by (T-D), Tahiti minus Darwin atmospheric pressure, had a prominent peak at 4.1 years and a smaller peak at 2.31 years. CFC-11 had only one significant peak at 3.7 years in the southern hemisphere, roughly similar to the 4.1 year (T-D) peak. CFC-12 had prominent QBO (2.16-2.33 years) in both the hemispheres and a QTO (3.6 years) in the southern hemisphere. For individual locations, CFC-11 showed barely significant QBO in the range (1.95-3.07 years), while CFC 12 showed strong QBO in the range (1.86-2.38 years). The difference in the spectral characteristics of CFC-11 and CFC 12 time series is attributed to differences in their lifetimes (44 and 180 years), source emission rates and transport processes.


Author(s):  
J.A. Baars ◽  
G.J. Goold ◽  
M.F. Hawke ◽  
P.J. Kilgarriff ◽  
M.D. Rolm

Patterns of pasture growth were measured on 3 farms in the Bay of Plenty (BOP) and at No2 Dairy (Ruakura Agricultural Centre) in the Waikato from 1989 to 199 1. A standardised trim technique with cages and 4-weekly cutting under grazing was used. Long-term seasonal growth patterns, using a predictive pasture model, were also simulated. Simulated pasture growth from long-term climatic data shows that pasture growth rates are higher in winter, early spring and late autumn in the BOP than the Waikato. However, the actual measurements over the 2 years show that pasture growth over the latter periods is lower at the BOP sites than at the Waikato site. In the BOP the spring peak is much later than in the Waikato while an early summer peak, with higher growth rates than in the Waikato, occurred in the BOP. No such summer peak was evident in the Waikato. The difference between the two regions is caused by the large contribution of subtropical grasses to sward production in summer and autumn, The prolific summer growth of subtropical grasses may explain the low ryegrass content and low pasture production in winter. The lower than expected autumn, winter, spring production may also becaused by low clover content, possibly a result of competition from subtropical grasses and a sulphur deficiency. The apparent low amount of nitrogen fixed by clover may explain the low rates of pasture production over the cooler season. Applications of nitrogen fertiliser may substantially increase dry matter production from April to September. Keywords pasture,simulation,subtropical grasses, Paspalum, Digitaria sanguinalis, growth rates


2016 ◽  
Author(s):  
Ghislain Picard ◽  
Quentin Libois ◽  
Laurent Arnaud

Abstract. Ice is a highly transparent material in the visible. According to the most widely used database (Warren and Brandt, 2008; IA2008), the ice absorption coefficient reaches values lower than 10−3 m−1 around 400 nm. These values were obtained from a radiance profile measured in a single snow layer at Dome C in Antarctica. We reproduced this experiment using a fiber optics inserted in the snow to record 56 profiles from which 70 homogeneous layers were identified. Applying the same estimation method on every layer yields 70 ice absorption spectra with a significant variability and overall larger than IA2008 by one order of magnitude. We devise another estimation method based on Bayesian inference. It reduces the statistical variability and confirms the higher absorption, around 2 × 10−2 m−1 near the minimum at 440 nm. We explore potential instrumental artifacts by developing a 3D radiative transfer model able to explicitly account for the presence of the fiber in the snow. The simulation results show that the radiance profile is indeed perturbed by the fiber intrusion but the error on the ice absorption estimate is not larger than a factor 2. This is insufficient to explain the difference between our new estimate and IA2008. Nevertheless, considering the number of profiles acquired for this study and other estimates from the Antarctic Muon and Neutrino Detector Array (AMANDA), we estimate that ice absorption values around 10−2 m−1 at the minimum are more likely than under 10−3 m−1. We provide a new estimate in the range 400–600 nm for future modeling of snow, cloud, and sea-ice optical properties. Most importantly we recommend that modeling studies take into account the large uncertainty of the ice absorption coefficient in the visible.


2000 ◽  
Vol 84 (2) ◽  
pp. 233-245 ◽  
Author(s):  
Ole Lammert ◽  
Niels Grunnet ◽  
Peter Faber ◽  
Kirsten Schroll Bjørnsbo ◽  
John Dich ◽  
...  

Ten pairs of normal men were overfed by 5 MJ/d for 21 d with either a carbohydrate-rich or a fat-rich diet (C- and F-group). The two subjects in each pair were requested to follow each other throughout the day to ensure similar physical activity and were otherwise allowed to maintain normal daily life. The increase in body weight, fat free mass and fat mass showed great variation, the mean increases being 1·5 kg, 0·6 kg and 0·9 kg respectively. No significant differences between the C- and F-group were observed. Heat production during sleep did not change during overfeeding. The RQ during sleep was 0·86 and 0·78 in the C- and F-group respectively. The accumulated faecal loss of energy, DM, carbohydrate and protein was significantly higher in the C- compared with the F-group (30, 44, 69 and 51 % higher respectively), whereas the fat loss was the same in the two groups. N balance was not different between the C- and F-group and was positive. Fractional contribution from hepatic de novo lipogenesis, as measured by mass isotopomer distribution analysis after administration of [1-13C]acetate, was 0·20 and 0·03 in the C-group and the F-group respectively. Absolute hepatic de novo lipogenesis in the C-group was on average 211 g per 21 d. Whole-body de novo lipogenesis, as obtained by the difference between fat mass increase and dietary fat available for storage, was positive in six of the ten subjects in the C-group (mean 332 (SEM 191) g per 21 d). The change in plasma leptin concentration was positively correlated with the change in fat mass. Thus, fat storage during overfeeding of isoenergetic amounts of diets rich in carbohydrate or in fat was not significantly different, and carbohydrates seemed to be converted to fat by both hepatic and extrahepatic lipogenesis.


Author(s):  
Marina V. Khlopkova

One of the ways to study the reactions of marine invertebrates to the external effects of changes in temperature and salinity is the biogeochemical analysis of skeletal parts, which are consistently built up during ontogenesis and record a variety of information about these changes. The most studied shells of mollusks, sea urchin shells and skeletal parts of corals. Information about the chemical composition of modern and fossil mollusk shells is widely used in solving geological and biological problems, including determining the temperature and salinity of ancient marine basins, studying the diagenesis of carbonate sediments, and the biochemical evolution of invertebrates. X-ray diffraction analysis of the shell matter of didacnae belonging to the Cardiidae showed an aragonite composition. The quantitative determination of elements in mollusk shells by microprobe analysis of spot scanning and spectrometric method is carried out. Samples were taken in successive layers of shell growth within the annual ring, and the seasonal dynamics of strontium changes were detected. For Didacna, strontium is the main element-indicator of seasonal and ontogenetic growth, is included in the crystal lattice of aragonite and forms strong compounds in the process of shell formation during the life of these bivalves. The variability of seasonal, ontogenetic, and taxonomic differences in a number of indicator elements in living and Pleistocene bivalves of the genus Didacna was studied.


1930 ◽  
Vol 7 (2) ◽  
pp. 165-174
Author(s):  
M. A. TAZELAAR

Linear measurements of certain appendages and the carapace of P. carcinus were made and plotted in various ways. The following conclusions were drawn: 1. The cheliped shows heterogonic growth in both male and female, but more markedly in the male, the values of k being: male 1.8 and female 1.48 2. The pereiopods in both male and female are slightly heterogonic. The relative growth rates are graded from p3 to p5, that of p3 being slightly greater than that of p5 3. Of the ordinary pereiopods the rate of growth of p1 is the smallest in the male, but the largest in the female. 4. The difference between the rates of growth of p1 and p3 in male and female is greatest where the rate of growth in the heterogonic organ, the cheliped, is most excessive in the male. 5. The growth of the 3rd maxilliped is slightly negatively heterogonic, the value of k in the male being 0.93 and in the female 0.95. Hence there seems to be a correlation between the marked heterogony in the cheliped on the growth rate of neighbouring appendages. In those immediately posterior to the cheliped the growth rate is increased and in those anterior decreased.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Kara K. S. Layton ◽  
Greg W. Rouse ◽  
Nerida G. Wilson

Abstract Background Marine invertebrates are abundant and diverse on the continental shelf in Antarctica, but little is known about their parasitic counterparts. Endoparasites are especially understudied because they often possess highly modified body plans that pose problems for their identification. Asterophila, a genus of endoparasitic gastropod in the family Eulimidae, forms cysts in the arms and central discs of asteroid sea stars. There are currently four known species in this genus, one of which has been described from the Antarctic Peninsula (A. perknasteri). This study employs molecular and morphological data to investigate the diversity of Asterophila in Antarctica and explore cophylogenetic patterns between host and parasite. Results A maximum-likelihood phylogeny of Asterophila and subsequent species-delimitation analysis uncovered nine well-supported putative species, eight of which are new to science. Most Asterophila species were found on a single host species, but four species were found on multiple hosts from one or two closely related genera, showing phylogenetic conservatism of host use. Both distance-based and event-based cophylogenetic analyses uncovered a strong signal of coevolution in this system, but most associations were explained by non-cospeciation events. Discussion The prevalence of duplication and host-switching events in Asterophila and its asteroid hosts suggests that synchronous evolution may be rare even in obligate endoparasitic systems. The apparent restricted distribution of Asterophila from around the Scotia Arc may be an artefact of concentrated sampling in the area and a low obvious prevalence of infection. Given the richness of parasites on a global scale, their role in promoting host diversification, and the threat of their loss through coextinction, future work should continue to investigate parasite diversity and coevolution in vulnerable ecosystems.


Sign in / Sign up

Export Citation Format

Share Document