scholarly journals Neural correlates of economic game playing

2008 ◽  
Vol 363 (1511) ◽  
pp. 3859-3874 ◽  
Author(s):  
Frank Krueger ◽  
Jordan Grafman ◽  
Kevin McCabe

The theory of games provides a mathematical formalization of strategic choices, which have been studied in both economics and neuroscience, and more recently has become the focus of neuroeconomics experiments with human and non-human actors. This paper reviews the results from a number of game experiments that establish a unitary system for forming subjective expected utility maps in the brain, and acting on these maps to produce choices. Social situations require the brain to build an understanding of the other person using neuronal mechanisms that share affective and intentional mental states. These systems allow subjects to better predict other players' choices, and allow them to modify their subjective utility maps to value pro-social strategies. New results for a trust game are presented, which show that the trust relationship includes systems common to both trusting and trustworthy behaviour, but they also show that the relative temporal positions of first and second players require computations unique to that role.

2017 ◽  
Vol 31 (6) ◽  
pp. 599-613 ◽  
Author(s):  
Timothy A. Allen ◽  
Amanda R. Rueter ◽  
Samantha V. Abram ◽  
James S. Brown ◽  
Colin G. Deyoung ◽  
...  

Theory of mind, or mentalizing, defined as the ability to reason about another's mental states, is a crucial psychological function that is disrupted in some forms of psychopathology, but little is known about how individual differences in this ability relate to personality or brain function. One previous study linked mentalizing ability to individual differences in the personality trait Agreeableness. Agreeableness encompasses two major subdimensions: Compassion reflects tendencies toward empathy, prosocial behaviour, and interpersonal concern, whereas Politeness captures tendencies to suppress aggressive and exploitative impulses. We hypothesized that Compassion but not Politeness would be associated with better mentalizing ability. This hypothesis was confirmed in Study 1 ( N = 329) using a theory of mind task that required reasoning about the beliefs of fictional characters. Post hoc analyses indicated that the honesty facet of Agreeableness was negatively associated with mentalizing. In Study 2 ( N = 217), we examined whether individual differences in mentalizing and related traits were associated with patterns of resting–state functional connectivity in the brain. Performance on the theory of mind task was significantly associated with patterns of connectivity between the dorsal medial and core subsystems of the default network, consistent with evidence implicating these regions in mentalization. Copyright © 2017 European Association of Personality Psychology


2019 ◽  
Author(s):  
Georg Northoff ◽  
Naotsugu Tsuchiya ◽  
Hayato Saigo

AbstractConsciousness is a central issue in cognitive neuroscience. To explain the relationship between consciousness and its neural correlates, various theories have been proposed. We still lack a formal framework that can address the nature of the relationship between consciousness and its physical substrates though. Here, we provide a novel mathematical framework of Category Theory (CT), in which we can define and study the “sameness” between “different” domains of phenomena such as consciousness and its neural substrates. CT was designed and developed to deal with the “relationships” between various domains of phenomena. We introduce three concepts of CT including (i) category; (ii) inclusion functor and expansion functor; and (iii) natural transformation between the functors. Each of these mathematical concepts is related to specific features in the neural correlates of consciousness (NCC). In this novel framework, we will examine two of the major theories of consciousness: integrated information theory (IIT) of consciousness and temporo-spatial theory of consciousness (TTC). These theories concern the structural relationships among structures of physical substrates and subjective experiences. The three CT-based concepts, introduced in this paper, unravel some basic issues in our search for the NCC; while addressing the same questions, we show that IIT and TTC provide different albeit complementary answers. Importantly, our account suggests that we need to go beyond a traditional concept of NCC including both content-specific and full NCC. We need to shift our focus from the relationship between “one” neuronal and “one” phenomenal state to the relationship between a structure of neural states and a structure of phenomenal states. We conclude that CT unravels and highlights basic questions about the NCC in general which needs to be met and addressed by any future neuroscientific theory of consciousness.Author summaryNeuroscience has made considerable progress in uncovering the neural correlates of consciousness (NCC). At the same time, recent studies demonstrated the complexity of the neuronal mechanisms underlying consciousness. To make further progress in the neuroscience of consciousness, we need proper mathematical formalization of the neuronal mechanisms potentially underlying consciousness. Providing a first tentative attempt, our paper addresses both by (i) pointing out the specific problems of and proposing a new approach to go beyond the traditional approach of the neural correlates of consciousness, and (ii) by recruiting a recently popular mathematical formalization, category theory (CT). With CT, we provide mathematical formalization of the broader neural correlates of consciousness by its application to two of the major theories, integrated information theory (IIT) and temporo-spatial theory of consciousness (TTC). Together, our CT-based mathematical formalization of the neural correlates of consciousness including its specification in the terms of IIT and TTC allows to go beyond the current concept of NCC in both mathematical and neural terms.


2020 ◽  
Author(s):  
Chantelle S. Lloyd ◽  
Andrew A. Nicholson ◽  
Maria Densmore ◽  
Jean Théberge ◽  
Richard W. J. Neufeld ◽  
...  

2021 ◽  
pp. 1-11
Author(s):  
Francesca Biondo ◽  
Charlotte Nymberg Thunell ◽  
Bing Xu ◽  
Congying Chu ◽  
Tianye Jia ◽  
...  

Abstract Background Sex-related differences in psychopathology are known phenomena, with externalizing and internalizing symptoms typically more common in boys and girls, respectively. However, the neural correlates of these sex-by-psychopathology interactions are underinvestigated, particularly in adolescence. Methods Participants were 14 years of age and part of the IMAGEN study, a large (N = 1526) community-based sample. To test for sex-by-psychopathology interactions in structural grey matter volume (GMV), we used whole-brain, voxel-wise neuroimaging analyses based on robust non-parametric methods. Psychopathological symptom data were derived from the Strengths and Difficulties Questionnaire (SDQ). Results We found a sex-by-hyperactivity/inattention interaction in four brain clusters: right temporoparietal-opercular region (p < 0.01, Cohen's d = −0.24), bilateral anterior and mid-cingulum (p < 0.05, Cohen's d = −0.18), right cerebellum and fusiform (p < 0.05, Cohen's d = −0.20) and left frontal superior and middle gyri (p < 0.05, Cohen's d = −0.26). Higher symptoms of hyperactivity/inattention were associated with lower GMV in all four brain clusters in boys, and with higher GMV in the temporoparietal-opercular and cerebellar-fusiform clusters in girls. Conclusions Using a large, sex-balanced and community-based sample, our study lends support to the idea that externalizing symptoms of hyperactivity/inattention may be associated with different neural structures in male and female adolescents. The brain regions we report have been associated with a myriad of important cognitive functions, in particular, attention, cognitive and motor control, and timing, that are potentially relevant to understand the behavioural manifestations of hyperactive and inattentive symptoms. This study highlights the importance of considering sex in our efforts to uncover mechanisms underlying psychopathology during adolescence.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Joseph M. Baker ◽  
Ning Liu ◽  
Xu Cui ◽  
Pascal Vrticka ◽  
Manish Saggar ◽  
...  

Abstract Researchers from multiple fields have sought to understand how sex moderates human social behavior. While over 50 years of research has revealed differences in cooperation behavior of males and females, the underlying neural correlates of these sex differences have not been explained. A missing and fundamental element of this puzzle is an understanding of how the sex composition of an interacting dyad influences the brain and behavior during cooperation. Using fNIRS-based hyperscanning in 111 same- and mixed-sex dyads, we identified significant behavioral and neural sex-related differences in association with a computer-based cooperation task. Dyads containing at least one male demonstrated significantly higher behavioral performance than female/female dyads. Individual males and females showed significant activation in the right frontopolar and right inferior prefrontal cortices, although this activation was greater in females compared to males. Female/female dyad’s exhibited significant inter-brain coherence within the right temporal cortex, while significant coherence in male/male dyads occurred in the right inferior prefrontal cortex. Significant coherence was not observed in mixed-sex dyads. Finally, for same-sex dyads only, task-related inter-brain coherence was positively correlated with cooperation task performance. Our results highlight multiple important and previously undetected influences of sex on concurrent neural and behavioral signatures of cooperation.


2017 ◽  
Vol 24 (3) ◽  
pp. 277-293 ◽  
Author(s):  
Selen Atasoy ◽  
Gustavo Deco ◽  
Morten L. Kringelbach ◽  
Joel Pearson

A fundamental characteristic of spontaneous brain activity is coherent oscillations covering a wide range of frequencies. Interestingly, these temporal oscillations are highly correlated among spatially distributed cortical areas forming structured correlation patterns known as the resting state networks, although the brain is never truly at “rest.” Here, we introduce the concept of harmonic brain modes—fundamental building blocks of complex spatiotemporal patterns of neural activity. We define these elementary harmonic brain modes as harmonic modes of structural connectivity; that is, connectome harmonics, yielding fully synchronous neural activity patterns with different frequency oscillations emerging on and constrained by the particular structure of the brain. Hence, this particular definition implicitly links the hitherto poorly understood dimensions of space and time in brain dynamics and its underlying anatomy. Further we show how harmonic brain modes can explain the relationship between neurophysiological, temporal, and network-level changes in the brain across different mental states ( wakefulness, sleep, anesthesia, psychedelic). Notably, when decoded as activation of connectome harmonics, spatial and temporal characteristics of neural activity naturally emerge from the interplay between excitation and inhibition and this critical relation fits the spatial, temporal, and neurophysiological changes associated with different mental states. Thus, the introduced framework of harmonic brain modes not only establishes a relation between the spatial structure of correlation patterns and temporal oscillations (linking space and time in brain dynamics), but also enables a new dimension of tools for understanding fundamental principles underlying brain dynamics in different states of consciousness.


2011 ◽  
Vol 21 (3) ◽  
pp. 88-95 ◽  
Author(s):  
Deryk S. Beal

We are amassing information about the role of the brain in speech production and the potential neural limitations that coincide with developmental stuttering at a fast rate. As such, it is difficult for many clinician-scientists who are interested in the neural correlates of stuttering to stay informed of the current state of the field. In this paper, I aim to inspire clinician-scientists to tackle hypothesis-driven research that is grounded in neurobiological theory. To this end, I will review the neuroanatomical structures, and their functions, which are implicated in speech production and then describe the relevant differences identified in these structures in people who stutter relative to their fluently speaking peers. I will conclude the paper with suggestions on directions of future research to facilitate the evolution of the field of neuroimaging of stuttering.


1878 ◽  
Vol 27 (185-189) ◽  
pp. 166-177 ◽  

The present communication forms an abstract of the first portion of a series of investigations having the following primary objects in view:— 1st. To find out, as far as possible, the normal relative temperatures of different portions of the surface of the head, when the brain is comparatively inactive. 2nd. To study the effect of different mental states upon the different portions of the surface of the head previously examined in the condition of comparative cerebral inactivity.


1982 ◽  
Vol 11 ◽  
pp. 74-86 ◽  
Author(s):  
Kaj Björkqvist

The biological study of man is one of today's most rapidly advancing sciences. There is no reason for not utilizing these methodologies of research and the knowledge already gained when studying ecstasy and other similar religious phenomena. Drugs have been used in all parts of the world as an ecstasy technique. Since mental states and physiological correlates always accompany each other, it is obvious that the human mind can be affected by external means, for instance by drugs. But the opposite is also true; mental changes affect the body, as they do in the case of psychosomatic diseases. Ecstasy is often described as an extremely joyful experience; this pleasure must necessarily also have a physiological basis. It is of course too early to say anything for certain, but the discovery of pleasure centres in the brain might offer an explanation. It is not far-fetched to suggest that when a person experiences euphoric ecstasy, it might, in some way or other, be connected with a cerebral pleasure center. Can it be, for example, that religious ecstasy is attained only by some mechanism triggering off changes in the balance of the transmitter substances? Or is it reached only via a change in the hormonal balance, or only by a slowing down of the brain waves, or is a pleasure centre activated? When a person is using an ecstasy technique, he usually does so within a religious tradition. When he reaches an experience, a traditional interpretation of it already exists.


Sign in / Sign up

Export Citation Format

Share Document