scholarly journals Identifying and characterizing a novel Sindbis virus capsid and IRAK1 interaction

2020 ◽  
Vol 2 (7A) ◽  
Author(s):  
V Landers ◽  
Kevin Sokoloski

Alphaviruses are arthropod-borne positive-sense RNA viruses that have the capacity to cause large scale outbreaks of severe disease. As of now, there are no effective therapeutic strategies with which alphaviral disease may be treated. Thus, there is a need for research that defines the mechanism(s) by which the alphaviruses establish infection and cause pathogenesis. Our previous work identified non-assembly interactions between the SINV Capsid protein and the viral genomic RNA that were important for viral RNA stabilization early during infection. These efforts led us to evaluate the Protein:Protein interactions of the SINV Capsid protein using the BioID2 discovery approach to define the mechanism of action underlying the SINV Capsid-mediated genome stability. To our surprise, these efforts indicated that the SINV CP protein interacts with the host IRAK1 protein in tissue culture models of infection. To validate the interface we utilized a Bimolecular Fluorescence Complementation approach to confirm the SINV Capsid-IRAK1 interaction. After confirming the novel Capsid Protein:Protein interaction we hypothesized that the SINV Capsid protein may interfere with IRAK1-dependent signaling during infection. To this end, we assessed the dose-responsiveness of several IRAK1-dependent signaling pathways, including TLRs 4 and 7 in the presence of the SINV Capsid protein. We found that the TLR-agonist response, was significantly decreased in the presence of the SINV Capsid protein. Collectively, these data are highly suggestive that the SINV Capsid protein interferes with TLR signaling during viral infection contributing to the evasion of the host innate immune response.

Author(s):  
Prasad Nagakumar ◽  
Ceri-Louise Chadwick ◽  
Andrew Bush ◽  
Atul Gupta

AbstractThe COVID-19 pandemic caused by SARS-COV-2 virus fortunately resulted in few children suffering from severe disease. However, the collateral effects on the COVID-19 pandemic appear to have had significant detrimental effects on children affected and young people. There are also some positive impacts in the form of reduced prevalence of viral bronchiolitis. The new strain of SARS-COV-2 identified recently in the UK appears to have increased transmissibility to children. However, there are no large vaccine trials set up in children to evaluate safety and efficacy. In this short communication, we review the collateral effects of COVID-19 pandemic in children and young people. We highlight the need for urgent strategies to mitigate the risks to children due to the COVID-19 pandemic. What is Known:• Children and young people account for <2% of all COVID-19 hospital admissions• The collateral impact of COVID-19 pandemic on children and young people is devastating• Significant reduction in influenza and respiratory syncytial virus (RSV) infection in the southern hemisphere What is New:• The public health measures to reduce COVID-19 infection may have also resulted in near elimination of influenza and RSV infections across the globe• A COVID-19 vaccine has been licensed for adults. However, large scale vaccine studies are yet to be initiated although there is emerging evidence of the new SARS-COV-2 strain spreading more rapidly though young people.• Children and young people continue to bear the collateral effects of COVID-19 pandemic


2008 ◽  
Vol 82 (9) ◽  
pp. 4461-4470 ◽  
Author(s):  
Ranjit Warrier ◽  
Benjamin R. Linger ◽  
Barbara L. Golden ◽  
Richard J. Kuhn

ABSTRACT Sindbis virus is an enveloped positive-sense RNA virus in the alphavirus genus. The nucleocapsid core contains the genomic RNA surrounded by 240 copies of a single capsid protein. The capsid protein is multifunctional, and its roles include acting as a protease, controlling the specificity of RNA that is encapsidated into nucleocapsid cores, and interacting with viral glycoproteins to promote the budding of mature virus and the release of the genomic RNA into the newly infected cell. The region comprising amino acids 81 to 113 was previously implicated in two processes, the encapsidation of the viral genomic RNA and the stable accumulation of nucleocapsid cores in the cytoplasm of infected cells. In the present study, specific amino acids within this region responsible for the encapsidation of the genomic RNA have been identified. The region that is responsible for nucleocapsid core accumulation has considerable overlap with the region that controls encapsidation specificity.


2007 ◽  
Vol 81 (8) ◽  
pp. 4130-4136 ◽  
Author(s):  
Tobias Allander ◽  
Kalle Andreasson ◽  
Shawon Gupta ◽  
Annelie Bjerkner ◽  
Gordana Bogdanovic ◽  
...  

ABSTRACT We have previously reported on a system for large-scale molecular virus screening of clinical samples. As part of an effort to systematically search for unrecognized human pathogens, the technology was applied for virus screening of human respiratory tract samples. This resulted in the identification of a previously unknown polyomavirus provisionally named KI polyomavirus. The virus is phylogenetically related to other primate polyomaviruses in the early region of the genome but has very little homology (<30% amino acid identity) to known polyomaviruses in the late region. The virus was found by PCR in 6 (1%) of 637 nasopharyngeal aspirates and in 1 (0.5%) of 192 fecal samples but was not detected in sets of urine and blood samples. Since polyomaviruses have oncogenic potential and may produce severe disease in immunosuppressed individuals, continued searching for the virus in different medical contexts is important. This finding further illustrates how unbiased screening of respiratory tract samples can be used for the discovery of diverse virus types.


2002 ◽  
Vol 76 (22) ◽  
pp. 11688-11703 ◽  
Author(s):  
Lucia Labrada ◽  
Xiao Huan Liang ◽  
Wei Zheng ◽  
Christine Johnston ◽  
Beth Levine

ABSTRACT Several different mammalian neurotropic viruses produce an age-dependent encephalitis characterized by more severe disease in younger hosts. To elucidate potential factors that contribute to age-dependent resistance to lethal viral encephalitis, we compared central nervous system (CNS) gene expression in neonatal and weanling mice that were either mock infected or infected intracerebrally with a recombinant strain, dsTE12Q, of the prototype alphavirus Sindbis virus. In 1-day-old mice, infection with dsTE12Q resulted in rapidly fatal disease associated with high CNS viral titers and extensive CNS apoptosis, whereas in 4-week-old mice, dsTE12Q infection resulted in asymptomatic infection with lower CNS virus titers and undetectable CNS apoptosis. GeneChip expression comparisons of mock-infected neonatal and weanling mouse brains revealed developmental regulation of the mRNA expression of numerous genes, including some apoptosis regulatory genes, such as the proapoptotic molecules caspase-3 and TRAF4, which are downregulated during development, and the neuroprotective chemokine, fractalkine, which is upregulated during postnatal development. In parallel with increased neurovirulence and increased viral replication, Sindbis virus infection in 1-day-old mice resulted in both a greater number of host inflammatory genes with altered expression and greater changes in levels of host inflammatory gene expression than infection in 4-week-old mice. Only one inflammatory response gene, an expressed sequence tag similar to human ISG12, increased by a greater magnitude in infected 4-week-old mouse brains than in infected 1-day-old mouse brains. Furthermore, we found that enforced neuronal ISG12 expression results in a significant delay in Sindbis virus-induced death in neonatal mice. Together, our data identify genes that are developmentally regulated in the CNS and genes that are differentially regulated in the brains of different aged mice in response to Sindbis virus infection.


2007 ◽  
Vol 81 (20) ◽  
pp. 10933-10949 ◽  
Author(s):  
Guido van Marle ◽  
Joseph Antony ◽  
Heather Ostermann ◽  
Christopher Dunham ◽  
Tracey Hunt ◽  
...  

ABSTRACT West Nile virus (WNV) infection causes neurological disease at all levels of the neural axis, accompanied by neuroinflammation and neuronal loss, although the underlying mechanisms remain uncertain. Given the substantial activation of neuroinflammatory pathways observed in WNV infection, we hypothesized that WNV-mediated neuroinflammation and cell death occurred through WNV infection of both glia and neurons, which was driven in part by WNV capsid protein expression. Analysis of autopsied neural tissues from humans with WNV encephalomyelitis (WNVE) revealed WNV infection of both neurons and glia. Upregulation of proinflammatory genes, CXCL10, interleukin-1β, and indolamine-2′,3′-deoxygenase with concurrent suppression of the protective astrocyte-specific endoplasmic reticulum stress sensor gene, OASIS (for old astrocyte specifically induced substance), was evident in WNVE patients compared to non-WNVE controls. These findings were supported by increased ex vivo expression of these proinflammatory genes in glia infected by WNV-NY99. WNV infection caused endoplasmic reticulum stress gene induction and apoptosis in neurons but did not affect glial viability. WNV-infected astrocytic cells secreted cytotoxic factors, which caused neuronal apoptosis. The expression of the WNV-NY99 capsid protein in neurons and glia by a Sindbis virus-derived vector (SINrep5-WNVc) caused neuronal death and the release of neurotoxic factors by infected astrocytes, coupled with proinflammatory gene induction and suppression of OASIS. Striatal implantation of SINrep5-WNVC induced neuroinflammation in rats, together with the induction of CXCL10 and diminished OASIS expression, compared to controls. Moreover, magnetic resonance neuroimaging showed edema and tissue injury in the vicinity of the SINrep5-WNVc implantation site compared to controls, which was complemented by neurobehavioral abnormalities in the SINrep5-WNVc-implanted animals. These studies underscore the important interactions between the WNV capsid protein and neuroinflammation in the pathogenesis of WNV-induced neurological disorders.


mBio ◽  
2020 ◽  
Vol 11 (6) ◽  
Author(s):  
Autumn T. LaPointe ◽  
V Douglas Landers ◽  
Claire E. Westcott ◽  
Kevin J. Sokoloski

ABSTRACT Alphaviruses are positive-sense RNA viruses that utilize a 5′ cap structure to facilitate translation of viral proteins and to protect the viral RNA genome. Nonetheless, significant quantities of viral genomic RNAs that lack a canonical 5′ cap structure are produced during alphaviral replication and packaged into viral particles. However, the role/impact of the noncapped genomic RNA (ncgRNA) during alphaviral infection in vivo has yet to be characterized. To determine the importance of the ncgRNA in vivo, the previously described D355A and N376A nsP1 mutations, which increase or decrease nsP1 capping activity, respectively, were incorporated into the neurovirulent AR86 strain of Sindbis virus to enable characterization of the impact of altered capping efficiency in a murine model of infection. Mice infected with the N376A nsP1 mutant exhibited slightly decreased rates of mortality and delayed weight loss and neurological symptoms, although levels of inflammation in the brain were similar to those of wild-type infection. Although the D355A mutation resulted in decreased antiviral gene expression and increased resistance to interferon in vitro, mice infected with the D355A mutant showed significantly reduced mortality and morbidity compared to mice infected with wild-type virus. Interestingly, expression of proinflammatory cytokines was found to be significantly decreased in mice infected with the D355A mutant, suggesting that capping efficiency and the production of ncgRNA are vital to eliciting pathogenic levels of inflammation. Collectively, these data indicate that the ncgRNA have important roles during alphaviral infection and suggest a novel mechanism by which noncapped viral RNAs aid in viral pathogenesis. IMPORTANCE Mosquito-transmitted alphaviruses have been the cause of widespread outbreaks of disease that can range from mild illness to lethal encephalitis or severe polyarthritis. There are currently no safe and effective vaccines or therapeutics with which to prevent or treat alphaviral disease, highlighting the need to better understand alphaviral pathogenesis to develop novel antiviral strategies. This report reveals production of noncapped genomic RNAs (ncgRNAs) to be a novel determinant of alphaviral virulence and offers insight into the importance of inflammation to pathogenesis. Taken together, the findings reported here suggest that the ncgRNAs contribute to alphaviral pathogenesis through the sensing of the ncgRNAs during alphaviral infection and are necessary for the development of severe disease.


Vaccines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1384
Author(s):  
Emil Syundyukov ◽  
Martins Mednis ◽  
Linda Zaharenko ◽  
Eva Pildegovica ◽  
Ieva Danovska ◽  
...  

Due to the severe impact of COVID-19 on public health, rollout of the vaccines must be large-scale. Current solutions are not intended to promote an active collaboration between communities and public health researchers. We aimed to develop a digital platform for communication between scientists and the general population, and to use it for an exploratory study on factors associated with vaccination readiness. The digital platform was developed in Latvia and was equipped with dynamic consent management. During a period of six weeks 467 participants were enrolled in the population-based cross-sectional exploratory study using this platform. We assessed demographics, COVID-19-related behavioral and personal factors, and reasons for vaccination. Logistic regression models adjusted for the level of education, anxiety, factors affecting the motivation to vaccinate, and risk of infection/severe disease were built to investigate their association with vaccination readiness. In the fully adjusted multiple logistic regression model, factors associated with vaccination readiness were anxiety (odds ratio, OR = 3.09 [95% confidence interval 1.88; 5.09]), feelings of social responsibility (OR = 1.61 [1.16; 2.22]), and trust in pharmaceutical companies (OR = 1.53 [1.03; 2.27]). The assessment of a large number of participants in a six-week period show the potential of a digital platform to create a data-driven dialogue on vaccination readiness.


2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Jun Zou ◽  
Diana Tran ◽  
Angelo Pelonero ◽  
Rahul C Deo

Background: We recently discovered a conserved internal promoter in the Titin gene, which explains why truncating mutations in the C-terminal two thirds of the zebrafish ttna protein result in more severe disease, recapitulating a puzzling observation in human dilated cardiomyopathy (DCM) patients. Here we focus on the contribution of alternative splicing to the DCM phenotype, both in zebrafish Titin truncation mutants and in the context of an integrative model for Titin mutation interpretation. Methods and Results: Using CRISPR/Cas9, we disrupted an alternatively spliced exon in the I-band of Titin , normally present in zebrafish heart but absent in skeletal muscle. The resulting mutants had, on average, a milder cardiac phenotype than those with mutations in constitutive exons but also showed striking inter-sibling variability in disease expression, ranging from intact cardiac blood flow to severe early demise. The mutant exon demonstrated nonsense-altered splicing and disease severity paralleled selective deficiency in Titin transcript level, implying that variability in mutated exon inclusion coupled with nonsense-mediated decay (NMD) modulated phenotype. We next amassed Titin mutation information from 1785 human DCM cases and >68,000 controls to model mutation distribution and found three variance components 1) splicing; 2) internal isoform disruption; and 3) targeting of the C-terminal 2000 amino acids. An integrated model demonstrated strong predictive performance with an area under the receiver operating characteristic curve of 0.79 and correctly identified the highest risk individuals. Conclusions: We conclude that genetically targeted models and large-scale human data can be complementary in overcoming the challenges of genetic data interpretation.


2008 ◽  
Vol 82 (11) ◽  
pp. 5190-5197 ◽  
Author(s):  
Christopher B. Buck ◽  
Naiqian Cheng ◽  
Cynthia D. Thompson ◽  
Douglas R. Lowy ◽  
Alasdair C. Steven ◽  
...  

ABSTRACT Papillomaviruses are a family of nonenveloped DNA tumor viruses. Some sexually transmitted human papillomavirus (HPV) types, including HPV type 16 (HPV16), cause cancer of the uterine cervix. Papillomaviruses encode two capsid proteins, L1 and L2. The major capsid protein, L1, can assemble spontaneously into a 72-pentamer icosahedral structure that closely resembles native virions. Although the minor capsid protein, L2, is not required for capsid formation, it is thought to participate in encapsidation of the viral genome and plays a number of essential roles in the viral infectious entry pathway. The abundance of L2 and its arrangement within the virion remain unclear. To address these questions, we developed methods for serial propagation of infectious HPV16 capsids (pseudoviruses) in cultured human cell lines. Biochemical analysis of capsid preparations produced using various methods showed that up to 72 molecules of L2 can be incorporated per capsid. Cryoelectron microscopy and image reconstruction analysis of purified capsids revealed an icosahedrally ordered L2-specific density beneath the axial lumen of each L1 capsomer. The relatively close proximity of these L2 density buttons to one another raised the possibility of homotypic L2 interactions within assembled virions. The concept that the N and C termini of neighboring L2 molecules can be closely apposed within the capsid was supported using bimolecular fluorescence complementation or “split GFP” technology. This structural information should facilitate investigation of L2 function during the assembly and entry phases of the papillomavirus life cycle.


2007 ◽  
Vol 81 (24) ◽  
pp. 13552-13565 ◽  
Author(s):  
Natalia Garmashova ◽  
Svetlana Atasheva ◽  
Wenli Kang ◽  
Scott C. Weaver ◽  
Elena Frolova ◽  
...  

ABSTRACT The encephalitogenic New World alphaviruses, including Venezuelan (VEEV), eastern (EEEV), and western equine encephalitis viruses, constitute a continuing public health threat in the United States. They circulate in Central, South, and North America and have the ability to cause fatal disease in humans and in horses and other domestic animals. We recently demonstrated that these viruses have developed the ability to interfere with cellular transcription and use it as a means of downregulating a cellular antiviral response. The results of the present study suggest that the N-terminal, ∼35-amino-acid-long peptide of VEEV and EEEV capsid proteins plays the most critical role in the downregulation of cellular transcription and development of a cytopathic effect. The identified VEEV-specific peptide CVEE33-68 includes two domains with distinct functions: the α-helix domain, helix I, which is critically involved in supporting the balance between the presence of the protein in the cytoplasm and nucleus, and the downstream peptide, which might contain a functional nuclear localization signal(s). The integrity of both domains not only determines the intracellular distribution of the VEEV capsid but is also essential for direct capsid protein functioning in the inhibition of transcription. Our results suggest that the VEEV capsid protein interacts with the nuclear pore complex, and this interaction correlates with the protein's ability to cause transcriptional shutoff and, ultimately, cell death. The replacement of the N-terminal fragment of the VEEV capsid by its Sindbis virus-specific counterpart in the VEEV TC-83 genome does not affect virus replication in vitro but reduces cytopathogenicity and results in attenuation in vivo. These findings can be used in designing a new generation of live, attenuated, recombinant vaccines against the New World alphaviruses.


Sign in / Sign up

Export Citation Format

Share Document