scholarly journals Experimental Hyperthyroidism Decreases Gene Expression and Serum Levels of Adipokines in Obesity

2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Renata de Azevedo Melo Luvizotto ◽  
André Ferreira do Nascimento ◽  
Maria Teresa de Síbio ◽  
Regiane Marques Castro Olímpio ◽  
Sandro José Conde ◽  
...  

Aims. To analyze the influence of hyperthyroidism on the gene expression and serum concentration of leptin, resistin, and adiponectin in obese animals.Main Methods. MaleWistarrats were randomly divided into two groups: control (C)—fed with commercial chow ad libitum—and obese (OB)—fed with a hypercaloric diet. After group characterization, the OB rats continued receiving a hypercaloric diet and were randomized into two groups: obese animals (OB) and obese with 25 μg triiodothyronine (T3)/100 BW (OT). The T3dose was administered every day for the last 2 weeks of the study. After 30 weeks the animals were euthanized. Samples of blood and adipose tissue were collected for biochemical and hormonal analyses as well as gene expression of leptin, resistin, and adiponectin.Results. T3treatment was effective, increasing fT3levels and decreasing fT4and TSH serum concentration. Administration of T3promotes weight loss, decreases all fat deposits, and diminishes serum levels of leptin, resistin, and adiponectin by reducing their gene expression.Conclusions. Our results suggest that T3modulate serum and gene expression levels of leptin, resistin, and adiponectin in experimental model of obesity, providing new insights regarding the relationship between T3and adipokines in obesity.

Author(s):  
Alexandra Hochberg ◽  
Marissa Patz ◽  
Thomas Karrasch ◽  
Andreas Schäffler ◽  
Andreas Schmid

AbstractCAMP (Cathelicidin antimicrobial peptide) is synthesized and secreted by adipocytes and involved in adipose tissue (AT) innate immune response and host defense of subcutaneous AT against Gram positive bacteria. Data on the regulation of CAMP in obesity and during weight loss are scarce and reference values do not exist. Serum CAMP levels (ELISA) and AT gene expression levels (quantitative real time PCR) were investigated in two large and longitudinal (12 months) cohorts of severely obese patients undergoing either a low calorie diet (LCD; n=79) or bariatric surgery (BS; n=156). The impact of metabolic factors on CAMP expression in vitro was investigated in differentiated 3T3-L1 adipocytes. CAMP serum levels significantly increased after BS but not during LCD. Females had lower CAMP serum levels and lower gene expression levels in subcutaneous AT. CAMP was positively correlated to unfavorable metabolic factors/adipokines and negatively to favorable factors/adipokines. CAMP gene expression was higher in subcutaneous than in visceral AT but serum CAMP levels were not correlated to levels of AT gene expression. While certain bile acids upregulated CAMP expression in vitro, high glucose/insulin as well as GLP-1 had an inhibitory effect. There exist gender-specific and AT compartment-specific effects on the regulation of CAMP gene expression. Weight loss induced by BS (but not by LCD) upregulated CAMP serum levels suggesting the involvement of weight loss-independent mechanisms in CAMP regulation such as bile acids, incretins and metabolic factors. CAMP might represent an adipokine at the interface between metabolism and innate immune response.


Author(s):  
Javid Rezaei Lord ◽  
Farhad Mashayekhi ◽  
Zivar Salehi

Abstract The aim of this project was to evaluate the relationship of matrix metalloproteinase-9 (MMP-9) genetic variation and its serum concentration with autism spectrum disorder (ASD). One hundred ASD and 120 controls were enrolled in this study. Genomic DNA was extracted from blood and MMP-9 polymorphism was determined by polymerase chain reaction restriction fragment length polymorphism and serum levels were measured by enzyme-linked immunosorbent assay. The frequencies of CC, CT, and TT genotypes were 72%, 26%, and 2% in controls and 31%, 57%, and 12% in ASD, respectively. The frequencies of C and T alleles in ASD were 59.5% and 40.5%, and controls were 86% and 14%, respectively. There is a significant increase in serum MMP-9 levels in ASD as compared to controls. We have also shown that TT genotype is significantly associated with increase serum MMP-9 levels in patients (TT, CT, and CC serum levels were 91.77 ± 10.53, 70.66 ± 7.21, and 38.66 ± 5.52 and in controls were 55.55 ± 11.39, 42.66 ± 7.85, and 30.55 ± 6.34 ng/ml, respectively). It is concluded that there is a significant association between rs3918242 MMP-9 polymorphism and its serum concentration with autism. We also suggest that TT genotype is associated with increased MMP9 expression and may be a risk factor for ASD.


Nutrients ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 1102 ◽  
Author(s):  
Albert Gibert-Ramos ◽  
Anna Crescenti ◽  
M. Salvadó

The aim of this study was to determine whether the consumption of cherry out of its normal harvest photoperiod affects adipose tissue, increasing the risk of obesity. Fischer 344 rats were held over a long day (LD) or a short day (SD), fed a standard diet (STD), and treated with a cherry lyophilizate (CH) or vehicle (VH) (n = 6). Biometric measurements, serum parameters, gene expression in white (RWAT) and brown (BAT) adipose tissues, and RWAT histology were analysed. A second experiment with similar conditions was performed (n = 10) but with a cafeteria diet (CAF). In the STD experiment, Bmal1 and Cry1 were downregulated in the CHSD group compared to the VHSD group. Pparα expression was downregulated while Ucp1 levels were higher in the BAT of the CHSD group compared to the VHSD group. In the CAF-fed rats, glucose and insulin serum levels increased, and the expression levels of lipogenesis and lipolysis genes in RWAT were downregulated, while the adipocyte area increased and the number of adipocytes diminished in the CHSD group compared to the VHSD group. In conclusion, we show that the consumption of cherry out of season influences the metabolism of adipose tissue and promotes fat accumulation when accompanied by an obesogenic diet.


Blood ◽  
2008 ◽  
Vol 112 (2) ◽  
pp. 406-414 ◽  
Author(s):  
Tomoyuki Sawado ◽  
Jessica Halow ◽  
Hogune Im ◽  
Tobias Ragoczy ◽  
Emery H. Bresnick ◽  
...  

Abstract Genome-wide analyses of the relationship between H3 K79 dimethylation and transcription have revealed contradictory results. To clarify this relationship at a single locus, we analyzed expression and H3 K79 modification levels of wild-type (WT) and transcriptionally impaired β-globin mutant genes during erythroid differentiation. Analysis of fractionated erythroid cells derived from WT/Δ locus control region (LCR) heterozygous mice reveals no significant H3 K79 dimethylation of the β-globin gene on either allele prior to activation of transcription. Upon transcriptional activation, H3 K79 di-methylation is observed along both WT and ΔLCR alleles, and both alleles are located in proximity to H3 K79 dimethylation nuclear foci. However, H3 K79 di-methylation is significantly increased along the ΔLCR allele compared with the WT allele. In addition, analysis of a partial LCR deletion mutant reveals that H3 K79 dimethylation is inversely correlated with β-globin gene expression levels. Thus, while our results support a link between H3 K79 dimethylation and gene expression, high levels of this mark are not essential for high level β-globin gene transcription. We propose that H3 K79 dimethylation is destabilized on a highly transcribed template.


Genes ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 525 ◽  
Author(s):  
Samar Tareen ◽  
Michiel Adriaens ◽  
Ilja Arts ◽  
Theo de Kok ◽  
Roel Vink ◽  
...  

Obesity is a global epidemic identified as a major risk factor for multiple chronic diseases and, consequently, diet-induced weight loss is used to counter obesity. The adipose tissue is the primary tissue affected in diet-induced weight loss, yet the underlying molecular mechanisms and changes are not completely deciphered. In this study, we present a network biology analysis workflow which enables the profiling of the cellular processes affected by weight loss in the subcutaneous adipose tissue. Time series gene expression data from a dietary intervention dataset with two diets was analysed. Differentially expressed genes were used to generate co-expression networks using a method that capitalises on the repeat measurements in the data and finds correlations between gene expression changes over time. Using the network analysis tool Cytoscape, an overlap network of conserved components in the co-expression networks was constructed, clustered on topology to find densely correlated genes, and analysed using Gene Ontology enrichment analysis. We found five clusters involved in key metabolic processes, but also adipose tissue development and tissue remodelling processes were enriched. In conclusion, we present a flexible network biology workflow for finding important processes and relevant genes associated with weight loss, using a time series co-expression network approach that is robust towards the high inter-individual variation in humans.


SciVee ◽  
2012 ◽  
Author(s):  
Lovisa Johansson ◽  
Anders Danielsson ◽  
Hemang Parikh ◽  
Maria Klintenberg ◽  
Fredrik Norström ◽  
...  

2000 ◽  
Vol 279 (6) ◽  
pp. E1398-E1405 ◽  
Author(s):  
Valérie Serazin-Leroy ◽  
Mireille Morot ◽  
Philippe de Mazancourt ◽  
Yves Giudicelli

Adipose tissue is an important source of angiotensinogen (ATG), and hypertension is commonly associated with android obesity. Therefore, we tested the hypothesis that androgens may control ATG gene expression and secretion in rat fat cells. In intact male rats, ATG mRNA expression (Northern blot and co-reverse transcription-polymerase chain reaction analysis) and protein secretion were significantly higher in deep intra-abdominal (perirenal and epididymal) than in subcutaneous adipocytes. After castration, ATG mRNA was reduced almost 50% in the three fat deposits, with parallel changes in ATG protein secretion. Conversely, testosterone treatment fully restored the ATG mRNA decrease after castration, whatever the anatomical origin of the adipocytes. Finally, a 24-h in vitro exposure of perirenal fat cells or differentiated preadipocytes from castrated rats to testosterone or dihydrotestosterone (10 nM free hormone concentration) increased ATG mRNA expression by 50–100%, an effect that was prevented by the anti-androgen cyproterone acetate. These data, demonstrating both in vivo and in vitro androgen induction of ATG mRNA expression in rat adipocytes, add further weight to the hypothesis of a link between adipose tissue ATG production, androgens, and android obesity-related hypertension.


2021 ◽  
Vol 53 (9) ◽  
pp. 1298-1306
Author(s):  
Dandan Wu ◽  
In Hyuk Bang ◽  
Byung-Hyun Park ◽  
Eun Ju Bae

AbstractIntermittent fasting (IF) is gaining popularity for its effectiveness in improving overall health, including its effectiveness in achieving weight loss and euglycemia. The molecular mechanisms of IF, however, are not well understood. This study investigated the relationship between adipocyte sirtuin 6 (Sirt6) and the metabolic benefits of IF. Adipocyte-specific Sirt6-knockout (aS6KO) mice and wild-type littermates were fed a high-fat diet (HFD) ad libitum for four weeks and then subjected to 12 weeks on a 2:1 IF regimen consisting of two days of feeding followed by one day of fasting. Compared with wild-type mice, aS6KO mice subjected to HFD + IF exhibited a diminished response, as reflected by their glucose and insulin intolerance, reduced energy expenditure and adipose tissue browning, and increased inflammation of white adipose tissue. Sirt6 deficiency in hepatocytes or in myeloid cells did not impair adaptation to IF. Finally, the results indicated that the impaired adipose tissue browning and reduced expression of UCP1 in aS6KO mice were accompanied by downregulation of p38 MAPK/ATF2 signaling. Our findings indicate that Sirt6 in adipocytes is critical to obtaining the improved glucose metabolism and metabolic profiles conferred by IF and that maintaining high levels of Sirt6 in adipocytes may mimic the health benefits of IF.


Sign in / Sign up

Export Citation Format

Share Document