scholarly journals N Management of European Grasslands: Can the Exchange of Gaseous N Species Be Influenced at the Operational Level?

2001 ◽  
Vol 1 ◽  
pp. 652-657 ◽  
Author(s):  
P. Calanca ◽  
A. Neftel ◽  
J. Fuhrer

Grassland ecosystems can be regarded as biochemical reactors in which large amounts of organic nitrogen (N) are converted into inorganic N, and vice versa. If managed in a sustainable manner, grasslands should operate in a quasi steady state, characterized by an almost perfect balance between total N input and output. As a consequence, the exchange of gaseous N species (NH3, NO, NO2, N2O, and N2) between grasslands and the atmosphere is very small compared to the total N turnover. In this study, the effects of two management options (mowing and fertilization) on production and emission of nitrous oxide (N2O) from a grass/clover crop were examined on the basis of observations and model results referring to an experiment carried out on the Swiss Plateau in late summer of 2000. It was found that production and emission of N2O induced by mowing were of the same order of magnitude as those brought about by fertilization, suggesting a possible transfer of N from clover to the soil after defoliation. Emissions were strongly modulated by precipitation on time scales ranging from 1 day to 1 week. This indicates that effective control of N2O emissions through management on a day-to-day basis requires reliable medium-range weather forecasts. Model calculations were not able to reproduce essential characteristics of the emissions. The model slightly overestimated the background emissions, but severely underestimated the emission peaks following fertilizer application, and largely failed to reproduce emission induced by mowing. Shortfalls in the model used for this study were found in relation to the description of soil-water fluxes, soil organic matter, and the physiology of clover.

2019 ◽  
Vol 11 (5) ◽  
pp. 1347 ◽  
Author(s):  
Jie Liu ◽  
Jumei Li ◽  
Yibing Ma ◽  
Enli Wang ◽  
Qiong Liang ◽  
...  

In spite of the importance of N management in agricultural production, closing the full nitrogen balance remains a challenge, mainly due to the uncertainties in both fluxes of nitrogen input and output. We analyzed N deposition and its influence on crop productivity and field nitrogen balance based on data from three of 15 years (1990–2005) of experiments in North China. The results showed that the average annual nitrogen deposition was 76, 80, and 94 kg N/ha at Changping, Zhengzhou, and Yangling in a wheat-maize rotation system, respectively. The deposited N could support a corresponding total biomass production (wheat plus maize) of 9.6, 10.6, and 8.8 Mg/ha with a total grain yield of 3.8, 4.8, and 3.7 Mg/ha, however, that did not cause a further decline in soil organic matter. N fertilizer application could increase total biomass (grain) by 244% (259%) and 74% (119%) for wheat and maize, respectively. Under optimal N management, N deposition accounted for 17–21% of the total N inputs, which affected significantly the recovery efficiency of applied N. N deposition showed a significant spatial variation in terms of the fraction of dry and wet depositions. On an annual average, N deposition roughly balanced out N losses due to NH3 volatilization and N2O loss from nitrification and denitrification. NH3 volatilization and NO3−-N leaching each accounted for 16–20% of the total N outputs. A system modeling approach is recommended to investigate the spatial variation of N leaching as affected by climatic conditions, and to fully account for the nitrogen fluxes. The N deposition derived from this study can be used as the background N input into the wheat-maize double cropping system for N balance.


Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1280
Author(s):  
Samata Mohanta ◽  
Mahua Banerjee ◽  
Ganesh Chandra Malik ◽  
Tanmoy Shankar ◽  
Sagar Maitra ◽  
...  

Nitrogen management is vital for economic and environmental sustainability. Asynchrony of fertilizer application with crop demand along various nitrogen losses in Eastern India leads to low fertilizer efficiency in Kharif rice. At the same time, direct-sowing is gaining popularity due to water and labor scarcity. In an experiment between 2017–2018 in West Bengal, India, the main plots represented establishment methods: conventional transplanting, TPR; direct-seeded rice, DSR; and drum seeded rice, DRR; while subplots represented nitrogen management options: farmer’s practice (FP), the state-recommended (SR), nutrient expert-based (NE), Green seeker-based (GS) and LCC-based (LCC) in a split-plot design with three repetitions. Plant growth, productivity, and profitability were evaluated. All indicators of growth or production were affected by establishment methods and by N-management options. The yield enhancement of TPR and DSR over DRR was 21.1 and 16.8%, respectively, while it was enhanced by 19.21, 14.71, 6.49, and 2.52% by GS, NE, LCC, and SR, respectively, over FP. The highest net return and return per rupee invested were recorded with DSR, while both GS and NE had better economics. The results suggest that the combination of DSR establishment with GS or NE requires further studies to find climate-smart management techniques in Kharif rice.


1999 ◽  
Vol 39 (12) ◽  
pp. 257-264 ◽  
Author(s):  
Hans E. Andersen ◽  
Brian Kronvang ◽  
Søren E. Larsen

An empirical leaching model was applied to data on agricultural practices at the field level within 6 small Danish agricultural catchments in order to document any changes in nitrogen (N) leaching from the root zone during the period 1989-96. The model calculations performed at normal climate revealed an average reduction in N-leaching that amounted to 30% in the loamy catchments and 9% in the sandy catchments. The reductions in N leaching could be ascribed to several improvements in agricultural practices during the study period: (i) regulations on livestock density; (ii) regulations on the utilisation of animal manure; (iii) regulations concerning application practices for manure. The average annual total N-loss from agricultural areas to surface water constituted only 54% of the annual average N leached from the root zone in the three loamy catchments and 17% in the three sandy catchments. Thus, subsurface N-removal processes are capable of removing large amounts of N leached from agricultural land. An empirical model for the annual diffuse N-loss to streams from small catchments is presented. The model predicts annual N-loss as a function of the average annual use of mineral fertiliser and manure in the catchment and the total annual runoff from the unsaturated zone.


1974 ◽  
Vol 50 (5) ◽  
pp. 181-185 ◽  
Author(s):  
Andrew Radvanyi

Live trapping and tagging methods were employed to assess small mammal populations within two hardwood plantations in southern Ontario. Excessive girdling damage in past years to young planted trees necessitated an evaluation of rodent populations and development of effective control measures. The application of an anticoagulant rodenticide to oat groats bait broadcast over the study area at an ingredient cost of approximately three dollars per acre virtually wiped out the small mammals. Reinvasion from surrounding areas was, however, fairly rapid, particularly during late summer. Further research on longer term control measures using poisoned bait feeder stations is recommended.


1990 ◽  
Vol 20 (1) ◽  
pp. 84-90 ◽  
Author(s):  
Paul E. Heilman

Eleven months after the May 1980 eruption of Mount Saint Helens in southeastern Washington, United States, three Populus clones were planted in an experiment on the Toutle River mudflow deposit. The trees grew at an abnormally slow rate and by 3 years were overtopped by a dense stand (14 600 ± 3600 trees/ha) of red alder seeded naturally onto the site. Over the 6-year period of the study, the total N content of the soil increased an average of 56 kg•ha−1•year−1•. Foliar N concentration in Populus increased significantly from a mean late summer – early autumn value in the 2nd year (1982) of 0.69% N to a value of 2.06% N at the end of the seventh growing season. The mean annual height growth of the largest Populus averaged <0.5 m/year in the first 3 years, increasing to an average of over 1.0 m/year in the 5th and 6th years. Fertilizer treatments with N (as urea) and N + P (as urea plus treble superphosphate) placed in the soil near the individual Populus at a maximum rate of 5.3 g N/tree increased height growth in the year of fertilization (1982) and the following year (the response in height growth for the 2 years totaled 64%). After 1984, no significant effects of fertilizer on height growth, total height, or diameter were evident. Nitrogen fertilization significantly increased foliar N concentration (1.54% N with the highest N treatment vs. 0.69% N in the control) in the year of treatment only. Phosphorus fertilization had no significant effect on growth or foliar P concentration. At 6 years, only 2% of the Populustrichocarpa Torr. & Gray clone and 13% of the tallest Populus hybrid were equal to or above the mean height of alder dominants and codominants (6.2 m). Additionally, the diameter growth of Populus was severely limited: the trees had only 8% of the cross-sectional area of "normal" trees for their height. Results indicated that on sites of low N such as the mudflow, Populus may not compete satisfactorily in mixture with alder. Such behavior is in sharp contrast to sites of high N, where red alder cannot compete with Populus.


2001 ◽  
Vol 1 ◽  
pp. 750-757 ◽  
Author(s):  
Stan Daberkow ◽  
Harold Taylor ◽  
Noel Gollehon ◽  
Milt Moravek

Given the societal concern about groundwater pollution from agricultural sources, public programs have been proposed or implemented to change farmer behavior with respect to nutrient use and management. However, few of these programs designed to change farmer behavior have been evaluated due to the lack of detailed data over an appropriate time frame. The Central Platte Natural Resources District (CPNRD) in Nebraska has identified an intensively cultivated, irrigated area with average groundwater nitrate-nitrogen (N) levels about double the EPA’s safe drinking water standard. The CPNRD implemented a joint education and regulatory N management program in the mid-1980s to reduce groundwater N. This analysis reports N use and management, yield, and groundwater nitrate trends in the CPNRD for nearly 3000 continuous-corn fields from 1989 to 1998, where producers faced limits on the timing of N fertilizer application but no limits on amounts. Groundwater nitrate levels showed modest improvement over the 10 years of this analysis, falling from the 1989–1993 average of 18.9 to 18.1 mg/l during 1994–1998. The availability of N in excess of crop needs was clearly documented by the CPNRD data and was related to optimistic yield goals, irrigation water use above expected levels, and lack of adherence to commercial fertilizer application guidelines. Over the 10-year period of this analysis, producers reported harvesting an annual average of 9729 kg/ha, 1569 kg/ha (14%) below the average yield goal. During 1989�1998, producers reported annually applying an average of 162.5 kg/ha of commercial N fertilizer, 15.7 kg/ha (10%) above the guideline level. Including the N contribution from irrigation water, the potential N contribution to the environment (total N available less estimated crop use) was estimated at 71.7 kg/ha. This is an estimate of the nitrates available for denitrification, volatilization, runoff, future soil N, and leaching to groundwater. On average, between 1989–1993 and 1994–1998, producers more closely followed CPNRD N fertilizer recommendations and increased their use of postemerge N applications � an indication of improved synchrony between N availability and crop uptake.


2013 ◽  
Vol 17 (10) ◽  
pp. 3815-3826 ◽  
Author(s):  
C. T. Chang ◽  
S. P. Hamburg ◽  
J. L. Hwong ◽  
N. H. Lin ◽  
M. L. Hsueh ◽  
...  

Abstract. Tropical cyclones (typhoons/hurricanes) have major impacts on the biogeochemistry of forest ecosystems, but the stochastic nature and the long intervals between storms means that there are limited data on their effects. We characterised the impacts of 14 typhoons over six years on hydrochemistry of a subtropical forest plantation in Taiwan, a region experiencing frequent typhoons. Typhoons contributed 1/3 of the annual rainfall on average, but ranged from 4 to 55%. The stochastic nature of annual typhoon related precipitation poses a challenge with respect to managing the impacts of these extreme events. This challenge is exacerbated by the fact that typhoon-related rainfall is not significantly correlated with wind velocity, the current focus of weather forecasts. Thus, little advance warning is provided for the hydrological impacts of these storms. The typhoons we studied contributed approximately one third of the annual input and output of most nutrients (except nitrogen) during an average 9.5 day yr−1 period, resulting in nutrient input/output rates an order of magnitude greater than during non-typhoon months. Nitrate output balanced input during the non-typhoon period, but during the typhoon period an average of 10 kg ha−1 yr−1 nitrate was lost. Streamwater chemistry exhibited similarly high variability during typhoon and non-typhoon periods and returned to pre-typhoon levels one to three weeks following each typhoon. The streamwater chemistry appears to be very resilient in response to typhoons, resulting in minimal loss of nutrients.


2000 ◽  
Vol 36 (2) ◽  
pp. 205-221 ◽  
Author(s):  
T. J. REGO ◽  
V. NAGESWARA RAO

In southern and central India, farmers crop Vertisols only in the post-rainy season, to avoid land management problems in the rainy season. In 1983 ICRISAT established a long-term trial seeking to intensify cropping. The trial included intercrops, sequential crops and appropriate Vertisol management technology to allow consecutive rainy-season and post-rainy season crops to be grown. Benefits provided by legumes to succeeding rainy-season sorghum (Sorghum bicolor) were analysed in relation to a non-legume system of sorghum + safflower (Carthamus tinctorius). Rainy-season sorghum grain yield production was sustained at about 2.7 t ha−1 over 12 years within a continuous sorghum–pigeonpea (Cajanus cajan) intercrop system. With a cowpea–pigeonpea intercrop system, succeeding sorghum benefitted each year by about 40 kg N ha−1 (fertilizer nitrogen (N) equivalent). Without N fertilizer application the sorghum grain yield was around 3.3 t ha−1. Legume benefits were less marked in the chickpea (Cicer arietinum)-based rotation than in the pigeonpea system, in which a 12-year build up of soil total N (about 125 μg g−1) was observed. Although sorghum benefitted from this system, pigeonpea yields declined over time due to soil-borne fungi and nematodes. Wider rotations of crops with pigeonpea may help to overcome these problems, while sustaining sorghum production.


2020 ◽  
Vol 12 (10) ◽  
pp. 4125 ◽  
Author(s):  
Qiang Liu ◽  
Hongwei Xu ◽  
Xingmin Mu ◽  
Guangju Zhao ◽  
Peng Gao ◽  
...  

Soil water and nutrients are major factors limiting crop productivity. In the present study, soil water use efficiency (WUE) and crop yield of millet and soybean were investigated under nine fertilization regimes (no nitrogen (N) and no phosphorus (P) (CK), 120 kg ha−1 N and no P (N1P0), 240 kg ha−1 N and no P (N2P0), 45 kg ha−1 P and no N (N0P1), 90 kg ha−1 P and no N (N0P2), 120 kg ha−1 N and 45 kg ha−1 P (N1P1), 240 kg ha−1 N and 45 kg ha−1 P (N2P1), 120 kg ha−1 N and 90 kg ha−1 P (N1P2), 240 kg ha−1 N and 90 kg ha−1 P (N2P2)) in the Loess Plateau, China. We conducted fertilization experiments in two cultivation seasons and collected soil nutrient, water use, and crop yield data. Combined N and P fertilization resulted in the greatest increase in crop yield and WUE, followed by the single P fertilizer application, and single N fertilizer application. The control treatment, which consisted of neither P nor N fertilizer application, had the least effect on crop yield. The combined N and P fertilization increased soil organic matter (SOM) and soil total N, while soil water consumption increased in all treatments. SOM and total N content increased significantly when compared to the control conditions, by 27.1–81.3%, and 301.3–669.2%, respectively, only under combined N and P application. The combined N and P application promoted the formation of a favorable soil aggregate structure and improved soil microbial activity, which accelerated fertilizer use, and enhanced the capacity of soil to maintain fertilizer supply. Crop yield increased significantly in all treatments when compared to the control conditions, with soybean and millet yields increasing by 82.5–560.1% and 55–490.8%, respectively. The combined application of N and P fertilizers increased soil water consumption, improved soil WUE, and satisfied crop growth and development requirements. In addition, soil WUE was significantly positively correlated with crop yield. Our results provide a scientific basis for rational crop fertilization in semi-arid areas on the Loess Plateau.


Modelling ◽  
2020 ◽  
Vol 1 (2) ◽  
pp. 215-224
Author(s):  
Nikolay Khabarov ◽  
Alexey Smirnov ◽  
Juraj Balkovič ◽  
Rastislav Skalský ◽  
Christian Folberth ◽  
...  

In recent years, the crop growth modeling community invested immense effort into high resolution global simulations estimating inter alia the impacts of projected climate change. The demand for computing resources in this context is high and expressed in processor core-years per one global simulation, implying several crops, management systems, and a several decades time span for a single climatic scenario. The anticipated need to model a richer set of alternative management options and crop varieties would increase the processing capacity requirements even more, raising the looming issue of computational efficiency. While several publications report on the successful application of the original field-scale crop growth model EPIC (Environmental Policy Integrated Climate) for running on modern supercomputers, the related performance improvement issues and, especially, associated trade-offs have only received, so far, limited coverage. This paper provides a comprehensive view on the principles of the EPIC setup for parallel computations and, for the first time, on those specific to heterogeneous compute clusters that are comprised of desktop computers utilizing their idle time to carry out massive computations. The suggested modification of the core EPIC model allows for a dramatic performance increase (order of magnitude) on a compute cluster that is powered by the open-source high-throughput computing software framework HTCondor.


Sign in / Sign up

Export Citation Format

Share Document