scholarly journals Conclusive Identification of Senescent T Cells Reveals Their Abundance in Aging Humans

2020 ◽  
Author(s):  
Ricardo Iván Martínez-Zamudio ◽  
Hannah K. Dewald ◽  
Themistoklis Vasilopoulos ◽  
Lisa Gittens-Williams ◽  
Patricia Fitzgerald-Bocarsly ◽  
...  

ABSTRACTAging leads to a progressive functional decline of the immune system, which renders the elderly increasingly susceptible to disease and infection. The degree to which immune cell senescence contributes to this functional decline, however, remains unclear since methods to accurately identify and isolate senescent immune cells are missing. By measuring senescence-associated ß-galactosidase activity, a hallmark of senescent cells, we demonstrate here that healthy humans develop senescent T lymphocytes in peripheral blood with advancing age. Particularly senescent CD8+ T cells increased in abundance with age, ranging from 30% of the total CD8+ T cell population in donors in their 20s and reaching levels of 64% in donors in their 60s. Senescent CD8+ T cell populations displayed features of telomere dysfunction-induced senescence as well as p16-mediated senescence, developed in various T cell differentiation states and established gene expression signatures consistent with the senescence state observed in other cell types. On the basis of our results we propose that cellular senescence of T lymphocytes is a major contributing factor to the observed decline of immune cell function with advancing age and that immune cell senescence, therefore, plays a significant role in the increased susceptibility of the elderly to age-associated diseases and infection.

2021 ◽  
Vol 2 ◽  
Author(s):  
Attiya A. Abbas ◽  
Arne N. Akbar

As people around the world continue to live longer, maintaining a good quality of life is of increasing importance. The COVID-19 pandemic revealed that the elderly are disproportionally vulnerable to infectious diseases and Immunosenescence plays a critical role in that. An ageing immune system influences the conventional activity of T cells which are at the forefront of eliminating harmful foreign antigens. With ageing, unconventional end-stage T cells, that exhibit a senescent phenotype, amass. These senescent T cells deviate from T cell receptor (TCR) signaling toward natural killer (NK) activity. The transition toward innate immune cell function from these adaptor T cells impacts antigen specificity, contributing to increased susceptibility of infection in the elderly. The mechanism by which senescent T cells arise remains largely unclear however in this review we investigate the part that bystander activation plays in driving the change in function of T cells with age. Cytokine-induced bystander activation may offer a plausible explanation for the induction of NK-like activity and senescence in T cells. Further understanding of these specific NK-like senescent T cells allows us to identify the benefits and detriments of these cells in health and disease which can be utilized or regulated, respectively. This review discusses the dynamic of senescent T cells in adopting NK-like T cells and the implications that has in an infectious disease context, predominately in the elderly.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Qian Gao ◽  
Hui-Ting Liu ◽  
Yu-Qin Xu ◽  
Lin Zhang ◽  
Yuan-Ru Liu ◽  
...  

Abstract Background Hypopharyngeal cancer (HPC) is associated with a poor prognosis and a high recurrence rate. Immune escape is one of the reasons for the poor prognosis of malignant tumors. Programmed cell death ligand 1 (PD-L1) and programmed cell death-1 (PD-1) have been shown to play important roles in immune escape. However, the role of PD-1/PD-L1 in HPC remains unclear. In this experiment, we investigated the effect of exosomes from HPC patient serum on CD8+ T cell function and PD-1/PD-L1 expression and, thus, on prognosis. We hope to provide guidance for the identification of new targets for HPC immunotherapy. Methods PD-1 and CD8 expression in 71 HPC tissues and 16 paracarcinoma tissues was detected by immunohistochemistry. Concurrently, the clinicopathological data of the patients were obtained to conduct correlation analysis. Exosomes were isolated from serum and then identified by Western blotting (WB), transmission electron microscopy (TEM), and nanoparticle tracking analysis (NTA). Flow cytometry was used to assess the activity of CD8+ T cells after exosome stimulation. The effects of exosomes on the ability of CD8+ T cells to kill FaDu cells were assessed by CCK-8 assay. The expression of IL-10 and TGF-β1 was measured by enzyme-linked immunosorbent assay (ELISA). PD-L1 expression in HPC tissue samples was evaluated by immunohistochemistry, and the relationship between PD-1/PD-L1 expression and prognosis was investigated with patient specimens. Results PD-1 expression was significantly upregulated on CD8+ T cells in tumor tissues compared with those in normal tissues. The overall survival (OS) and disease-free survival (DFS) of PD-1-overexpressing patients were decreased. Serum exosomes from patients can elevate PD-1 expression on CD8+ T cells and suppress their killing capacity and secretory function. The rate of positive PD-L1 expression was increased in HPC tissues compared with paracancerous tissues. The DFS and OS of the PD-1(+)-PD-L1(+) group were significantly lower than those of the PD-1(−)-PD-L1(−) group. Conclusion Our findings indicate that serum exosomes from HPC patients can inhibit CD8+ T cell function and that the PD-1-PD-L1 pathway plays an important role in the immune escape of HPC. Exosomes combined with immunotherapy may guide the treatment of patients with advanced disease in the future.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Alexandria C Wells ◽  
Keith A Daniels ◽  
Constance C Angelou ◽  
Eric Fagerberg ◽  
Amy S Burnside ◽  
...  

The differentiation of naive CD8 T cells into effector cytotoxic T lymphocytes upon antigen stimulation is necessary for successful antiviral, and antitumor immune responses. Here, using a mouse model, we describe a dual role for the let-7 microRNAs in the regulation of CD8 T cell responses, where maintenance of the naive phenotype in CD8 T cells requires high levels of let-7 expression, while generation of cytotoxic T lymphocytes depends upon T cell receptor-mediated let-7 downregulation. Decrease of let-7 expression in activated T cells enhances clonal expansion and the acquisition of effector function through derepression of the let-7 targets, including Myc and Eomesodermin. Ultimately, we have identified a novel let-7-mediated mechanism, which acts as a molecular brake controlling the magnitude of CD8 T cell responses.


Metabolites ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 461
Author(s):  
Jenifer Sanchez ◽  
Ian Jackson ◽  
Katie R. Flaherty ◽  
Tamara Muliaditan ◽  
Anna Schurich

Upon activation T cells engage glucose metabolism to fuel the costly effector functions needed for a robust immune response. Consequently, the availability of glucose can impact on T cell function. The glucose concentrations used in conventional culture media and common metabolic assays are often artificially high, representing hyperglycaemic levels rarely present in vivo. We show here that reducing glucose concentration to physiological levels in culture differentially impacted on virus-specific compared to generically activated human CD8 T cell responses. In virus-specific T cells, limiting glucose availability significantly reduced the frequency of effector-cytokine producing T cells, but promoted the upregulation of CD69 and CD103 associated with an increased capacity for tissue retention. In contrast the functionality of generically activated T cells was largely unaffected and these showed reduced differentiation towards a residency phenotype. Furthermore, T cells being cultured at physiological glucose concentrations were more susceptible to viral infection. This setting resulted in significantly improved lentiviral transduction rates of primary cells. Our data suggest that CD8 T cells are exquisitely adapted to their niche and provide a reminder of the need to better mimic physiological conditions to study the complex nature of the human CD8 T cell immune response.


2019 ◽  
Vol 216 (7) ◽  
pp. 1682-1699 ◽  
Author(s):  
Lisa A. Mielke ◽  
Yang Liao ◽  
Ella Bridie Clemens ◽  
Matthew A. Firth ◽  
Brigette Duckworth ◽  
...  

Interleukin (IL)-17–producing CD8+ T (Tc17) cells have emerged as key players in host-microbiota interactions, infection, and cancer. The factors that drive their development, in contrast to interferon (IFN)-γ–producing effector CD8+ T cells, are not clear. Here we demonstrate that the transcription factor TCF-1 (Tcf7) regulates CD8+ T cell fate decisions in double-positive (DP) thymocytes through the sequential suppression of MAF and RORγt, in parallel with TCF-1–driven modulation of chromatin state. Ablation of TCF-1 resulted in enhanced Tc17 cell development and exposed a gene set signature to drive tissue repair and lipid metabolism, which was distinct from other CD8+ T cell subsets. IL-17–producing CD8+ T cells isolated from healthy humans were also distinct from CD8+IL-17− T cells and enriched in pathways driven by MAF and RORγt. Overall, our study reveals how TCF-1 exerts central control of T cell differentiation in the thymus by normally repressing Tc17 differentiation and promoting an effector fate outcome.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Helena Batatinha ◽  
Edgar Tavares-Silva ◽  
Geovana S. F. Leite ◽  
Ayane S. Resende ◽  
José A. T. Albuquerque ◽  
...  

Abstract Probiotic supplementation arises as playing an immune-stimulatory role. High-intensity and -volume exercise can inhibit immune cell function, which threatens athletic performance and recovery. We hypothesized that 30 days of probiotic supplementation could stabilize the immune system of athletes preventing immune suppression after a marathon race. Twenty-seven male marathonists were double-blinded randomly into probiotic (Bifidobacterium-animalis-subsp.-Lactis (10 × 109) and Lactobacillus-Acidophilus (10 × 109) + 5 g of maltodextrin) and placebo (5 g of maltodextrin) group. They received 30 sachets and supplemented 1 portion/day during 30 days before the race. Blood were collected 30 days before (rest), 1 day before (pre), 1 h after (post) and 5 days after the race (recovery). Both chronic and acute exercise modulated a different T lymphocyte population (CD3+CD4−CD8− T-cells), increasing pre-race, decreasing post and returning to rest values at the recovery. The total number of CD8 T cell and the memory subsets statistically decreased only in the placebo group post-race. Pro-inflammatory cytokine production by stimulated lymphocytes decreased in the probiotic group after the supplementation period. 30 days of probiotic supplementation maintained CD8 T cell and effector memory cell population and played an immunomodulatory role in stimulated lymphocytes. Both, training and marathon modulated a non-classical lymphocyte population regardless of probiotic supplementation.


2020 ◽  
Vol 117 (23) ◽  
pp. 12961-12968 ◽  
Author(s):  
M. Zeeshan Chaudhry ◽  
Rosaely Casalegno-Garduno ◽  
Katarzyna M. Sitnik ◽  
Bahram Kasmapour ◽  
Ann-Kathrin Pulm ◽  
...  

Viral immune evasion is currently understood to focus on deflecting CD8 T cell recognition of infected cells by disrupting antigen presentation pathways. We evaluated viral interference with the ultimate step in cytotoxic T cell function, the death of infected cells. The viral inhibitor of caspase-8 activation (vICA) conserved in human cytomegalovirus (HCMV) and murine CMV (MCMV) prevents the activation of caspase-8 and proapoptotic signaling. We demonstrate the key role of vICA from either virus, in deflecting antigen-specific CD8 T cell-killing of infected cells. vICA-deficient mutants, lacking either UL36 or M36, exhibit greater susceptibility to CD8 T cell control than mutants lacking the set of immunoevasins known to disrupt antigen presentation via MHC class I. This difference is evident during infection in the natural mouse host infected with MCMV, in settings where virus-specific CD8 T cells are adoptively transferred. Finally, we identify the molecular mechanism through which vICA acts, demonstrating the central contribution of caspase-8 signaling at a point of convergence of death receptor-induced apoptosis and perforin/granzyme-dependent cytotoxicity.


2007 ◽  
Vol 81 (6) ◽  
pp. 2940-2949 ◽  
Author(s):  
Adam J. Gehring ◽  
Dianxing Sun ◽  
Patrick T. F. Kennedy ◽  
Esther Nolte-'t Hoen ◽  
Seng Gee Lim ◽  
...  

ABSTRACT CD8 T cells exert their antiviral function through cytokines and lysis of infected cells. Because hepatocytes are susceptible to noncytolytic mechanisms of viral clearance, CD8 T-cell antiviral efficiency against hepatotropic viruses has been linked to their capacity to produce gamma interferon (IFN-γ) and tumor necrosis factor alpha (TNF-α). On the other hand, intrahepatic cytokine production triggers the recruitment of mononuclear cells, which sustain acute and chronic liver damage. Using virus-specific CD8 T cells and human hepatocytes, we analyzed the modulation of virus-specific CD8 T-cell function after recognition peptide-pulsed or virally infected hepatocytes. We observed that hepatocyte antigen presentation was generally inefficient, and the quantity of viral antigen strongly influenced CD8 T-cell antiviral function. High levels of hepatitis B virus production induced robust IFN-γ and TNF-α production in virus-specific CD8 T cells, while limiting amounts of viral antigen, both in hepatocyte-like cells and naturally infected human hepatocytes, preferentially stimulated CD8 T-cell degranulation. Our data document a mechanism where virus-specific CD8 T-cell function is influenced by the quantity of virus produced within hepatocytes.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 840-840
Author(s):  
David M Woods ◽  
Karrune V. Woan ◽  
Eva Sahakian ◽  
John Powers ◽  
Fengdong Cheng ◽  
...  

Abstract Abstract 840 T-cells are an essential component of immune mediated tumor rejection. Adoptive transfer of T-cells results in a durable anti-tumor response in some patients with hematological malignancies. To further improve the efficacy of T-cell adoptive transfers, a better understanding of the regulatory checkpoints of these cells is needed. Here we show that HDAC11 is a negative regulator of CD8+ T-cell function, thus representing a potential target in adoptive immunotherapy. HDACs are a group of enzymes initially known for their role in deacetylating histones, thereby condensing chromatin structure and repressing gene expression. The known roles of HDACs as epigenetic regulators have recently expanded to include more complex regulatory functions including interactions with non-histone targets. HDAC11 is the most recently identified member of the HDAC family, and is highly expressed in brain, testis and T-cells. Recently, our group reported HDAC11 as a regulator of IL-10 production in antigen presenting cells. To determine the role of HDAC11 in T-cell biology, T-cells from HDAC11 knock out (HDAC11KO) mice were compared to wild-type T-cells in number, function and phenotype. HDAC11KO T-cells had no differences in absolute number or percentages of CD4+ or CD8+ lymphocytes. However CD8+ T-cells were hyper-proliferative upon CD3/CD28 stimulation and produced significantly higher levels of the pro-inflammatory, Tc1 cytokines IL-2, INF-γ, and TNF-α. However, no significant increases in the production of the Tc2 cytokines IL-4, IL-6 or IL-10 were seen. Further investigation of phenotypic differences also revealed that HDAC11KO mice have a larger percentage of central memory CD8+ T-cells. Additionally, HDAC11KO CD8+ T-cells express higher levels of the transcription factor Eomes, a known contributor to central memory cell formation as well as a controller of granzyme B and perforin production in CD8+ T-cells. This Tc1 and central memory-like phenotype translated to delayed tumor progression and survival in vivo in C1498 AML bearing mice treated with adoptively transferred HDAC11KO T-cells, as compared with wild type T-cells. Collectively, we have demonstrated HDAC11 as a negative regulator of CD8+ T-cell function, and a novel potential target to augment the efficacy of adoptive T-cell tumor immunotherapy. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document