scholarly journals Isoform-specific regulation of rhythmic gene expression by alternative polyadenylation

2020 ◽  
Author(s):  
Ben J Greenwell ◽  
Joshua R Beytebiere ◽  
Teresa M Lamb ◽  
Deborah Bell-Pedersen ◽  
Christine Merlin ◽  
...  

Alternative polyadenylation (APA) generates transcript isoforms with different 3′ ends. Differences in polyadenylation sites usage, which have been associated with diseases like cancer, regulate mRNA stability, subcellular localization, and translation. By characterizing APA across the 24-hour day in mouse liver, here we show that rhythmic gene expression occurs largely in an APA isoform-specific manner, and that hundreds of arrhythmically expressed genes surprisingly exhibit a rhythmic APA isoform. The underlying mechanisms comprise isoform-specific post-transcriptional regulation, transcription factor driven expression of specific isoform, co-transcriptional recruitment of RNA binding proteins that regulate mRNA cleavage and polyadenylation, and, to a lesser extent, cell subtype-specific expression. Remarkably, rhythmic expression of specific APA isoforms generates 24-hour rhythms in 3′ UTR length, with shorter UTRs in anticipation of the mouse active phase. Taken together, our findings demonstrate that cycling transcriptomes are regulated by APA, and suggest that APA strongly impacts the rhythmic regulation of biological functions.

2013 ◽  
Vol 3 (1) ◽  
Author(s):  
Yuting Liu ◽  
Wenchao Hu ◽  
Yasuhiro Murakawa ◽  
Jingwen Yin ◽  
Gang Wang ◽  
...  

2020 ◽  
Author(s):  
David Colameo ◽  
Marek Rajman ◽  
Michael Soutschek ◽  
Silvia Bicker ◽  
Lukas von Ziegler ◽  
...  

AbstractSynaptic scaling is a form of homeostatic plasticity which allows neurons to adjust their action potential firing rate in response to chronic alterations in neural activity. Synaptic scaling requires profound changes in gene expression, but the relative contribution of local and cell-wide mechanisms is controversial. Here we performed a comprehensive multi-omics characterization of the somatic and process compartments of primary rat hippocampal neurons during synaptic scaling. Thereby, we uncovered both highly compartment-specific and correlated changes in the neuronal transcriptome and proteome. Whereas downregulation of crucial regulators of neuronal excitability occurred primarily in the somatic compartment, structural components of excitatory postsynapses were mostly downregulated in processes. Motif analysis further suggests an important role for trans-acting post-transcriptional regulators, including RNA-binding proteins and microRNAs, in the local regulation of the corresponding mRNAs. Altogether, our study indicates that compartmentalized gene expression changes are widespread in synaptic scaling and might co-exist with neuron-wide mechanisms to allow synaptic computation and homeostasis.


2019 ◽  
Vol 19 (4) ◽  
pp. 255-263 ◽  
Author(s):  
Yuangang Wu ◽  
Xiaoxi Lu ◽  
Bin Shen ◽  
Yi Zeng

Background: Osteoarthritis (OA) is a disease characterized by progressive degeneration, joint hyperplasia, narrowing of joint spaces, and extracellular matrix metabolism. Recent studies have shown that the pathogenesis of OA may be related to non-coding RNA, and its pathological mechanism may be an effective way to reduce OA. Objective: The purpose of this review was to investigate the recent progress of miRNA, long noncoding RNA (lncRNA) and circular RNA (circRNA) in gene therapy of OA, discussing the effects of this RNA on gene expression, inflammatory reaction, apoptosis and extracellular matrix in OA. Methods: The following electronic databases were searched, including PubMed, EMBASE, Web of Science, and the Cochrane Library, for published studies involving the miRNA, lncRNA, and circRNA in OA. The outcomes included the gene expression, inflammatory reaction, apoptosis, and extracellular matrix. Results and Discussion: With the development of technology, miRNA, lncRNA, and circRNA have been found in many diseases. More importantly, recent studies have found that RNA interacts with RNA-binding proteins to regulate gene transcription and protein translation, and is involved in various pathological processes of OA, thus becoming a potential therapy for OA. Conclusion: In this paper, we briefly introduced the role of miRNA, lncRNA, and circRNA in the occurrence and development of OA and as a new target for gene therapy.


2021 ◽  
Vol 4 (1) ◽  
pp. 22
Author(s):  
Mrinmoyee Majumder ◽  
Viswanathan Palanisamy

Control of gene expression is critical in shaping the pro-and eukaryotic organisms’ genotype and phenotype. The gene expression regulatory pathways solely rely on protein–protein and protein–nucleic acid interactions, which determine the fate of the nucleic acids. RNA–protein interactions play a significant role in co- and post-transcriptional regulation to control gene expression. RNA-binding proteins (RBPs) are a diverse group of macromolecules that bind to RNA and play an essential role in RNA biology by regulating pre-mRNA processing, maturation, nuclear transport, stability, and translation. Hence, the studies aimed at investigating RNA–protein interactions are essential to advance our knowledge in gene expression patterns associated with health and disease. Here we discuss the long-established and current technologies that are widely used to study RNA–protein interactions in vivo. We also present the advantages and disadvantages of each method discussed in the review.


Author(s):  
Yi Zhang ◽  
Lian Liu ◽  
Qiongzi Qiu ◽  
Qing Zhou ◽  
Jinwang Ding ◽  
...  

AbstractOccurring in over 60% of human genes, alternative polyadenylation (APA) results in numerous transcripts with differing 3’ends, thus greatly expanding the diversity of mRNAs and of proteins derived from a single gene. As a key molecular mechanism, APA is involved in various gene regulation steps including mRNA maturation, mRNA stability, cellular RNA decay, and protein diversification. APA is frequently dysregulated in cancers leading to changes in oncogenes and tumor suppressor gene expressions. Recent studies have revealed various APA regulatory mechanisms that promote the development and progression of a number of human diseases, including cancer. Here, we provide an overview of four types of APA and their impacts on gene regulation. We focus particularly on the interaction of APA with microRNAs, RNA binding proteins and other related factors, the core pre-mRNA 3’end processing complex, and 3’UTR length change. We also describe next-generation sequencing methods and computational tools for use in poly(A) signal detection and APA repositories and databases. Finally, we summarize the current understanding of APA in cancer and provide our vision for future APA related research.


Antioxidants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 552
Author(s):  
Jasmine Harley ◽  
Benjamin E. Clarke ◽  
Rickie Patani

RNA binding proteins fulfil a wide number of roles in gene expression. Multiple mechanisms of RNA binding protein dysregulation have been implicated in the pathomechanisms of several neurodegenerative diseases including amyotrophic lateral sclerosis (ALS). Oxidative stress and mitochondrial dysfunction also play important roles in these diseases. In this review, we highlight the mechanistic interplay between RNA binding protein dysregulation, oxidative stress and mitochondrial dysfunction in ALS. We also discuss different potential therapeutic strategies targeting these pathways.


1984 ◽  
Vol 4 (10) ◽  
pp. 2151-2160
Author(s):  
S G Amara ◽  
R M Evans ◽  
M G Rosenfeld

Different 3' coding exons in the rat calcitonin gene are used to generate distinct mRNAs encoding either the hormone calcitonin in thyroidal C-cells or a new neuropeptide referred to as calcitonin gene-related peptide in neuronal tissue, indicating the RNA processing regulation is one strategy used in tissue-specific regulation of gene expression in the brain. Although the two mRNAs use the same transcriptional initiation site and have identical 5' terminal sequences, their 3' termini are distinct. The polyadenylation sites for calcitonin and calcitonin gene-related peptide mRNAs are located at the end of the exons 4 and 6, respectively. Termination of transcription after the calcitonin exon does not dictate the production of calcitonin mRNA, because transcription proceeds through both calcitonin and calcitonin gene-related peptide exons irrespective of which mRNA is ultimately produced. In isolated nuclei, both polyadenylation sites appear to be utilized; however, the proximal (calcitonin) site is preferentially used in nuclei from tissues producing calcitonin mRNA. These data suggest that the mechanism dictating production of each mRNA involves the selective use of alternative polyadenylation sites.


2015 ◽  
Vol 55 (2) ◽  
pp. 159-168 ◽  
Author(s):  
Daniil V Popov ◽  
Evgeny A Lysenko ◽  
Tatiana F Vepkhvadze ◽  
Nadia S Kurochkina ◽  
Pavel A Maknovskii ◽  
...  

The goal of this study was to identify unknown transcription start sites of thePPARGC1A(PGC-1α) gene in human skeletal muscle and investigate the promoter-specific regulation ofPGC-1αgene expression in human skeletal muscle. Ten amateur endurance-trained athletes performed high- and low-intensity exercise sessions (70 min, 70% or 50%o2max). High-throughput RNA sequencing and exon–exon junction mapping were applied to analyse muscle samples obtained at rest and after exercise.PGC-1αpromoter-specific expression and activation of regulators of PGC-1α gene expression (AMPK, p38 MAPK, CaMKII, PKA and CREB1) after exercise were evaluated using qPCR and western blot. Our study has demonstrated that during post-exercise recovery, human skeletal muscle expresses thePGC-1αgene via two promoters only. As previously described, the additional exon 7a that contains a stop codon was found in all samples. Importantly, only minor levels of other splice site variants were found (and not in all samples). Constitutive expressionPGC-1αgene occurs via the canonical promoter, independent of exercise intensity and exercise-induced increase of AMPKThr172phosphorylation level. Expression ofPGC-1αgene via the alternative promoter is increased of two orders after exercise. This post-exercise expression is highly dependent on the intensity of exercise. There is an apparent association between expression via the alternative promoter and activation of CREB1.


2021 ◽  
Vol 9 (3) ◽  
pp. 34
Author(s):  
Thomas E. Forman ◽  
Brenna J. C. Dennison ◽  
Katherine A. Fantauzzo

Cranial neural crest (NC) cells delaminate from the neural folds in the forebrain to the hindbrain during mammalian embryogenesis and migrate into the frontonasal prominence and pharyngeal arches. These cells generate the bone and cartilage of the frontonasal skeleton, among other diverse derivatives. RNA-binding proteins (RBPs) have emerged as critical regulators of NC and craniofacial development in mammals. Conventional RBPs bind to specific sequence and/or structural motifs in a target RNA via one or more RNA-binding domains to regulate multiple aspects of RNA metabolism and ultimately affect gene expression. In this review, we discuss the roles of RBPs other than core spliceosome components during human and mouse NC and craniofacial development. Where applicable, we review data on these same RBPs from additional vertebrate species, including chicken, Xenopus and zebrafish models. Knockdown or ablation of several RBPs discussed here results in altered expression of transcripts encoding components of developmental signaling pathways, as well as reduced cell proliferation and/or increased cell death, indicating that these are common mechanisms contributing to the observed phenotypes. The study of these proteins offers a relatively untapped opportunity to provide significant insight into the mechanisms underlying gene expression regulation during craniofacial morphogenesis.


Biomolecules ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1475
Author(s):  
Veronica Ruta ◽  
Vittoria Pagliarini ◽  
Claudio Sette

Signal transduction pathways transmit the information received from external and internal cues and generate a response that allows the cell to adapt to changes in the surrounding environment. Signaling pathways trigger rapid responses by changing the activity or localization of existing molecules, as well as long-term responses that require the activation of gene expression programs. All steps involved in the regulation of gene expression, from transcription to processing and utilization of new transcripts, are modulated by multiple signal transduction pathways. This review provides a broad overview of the post-translational regulation of factors involved in RNA processing events by signal transduction pathways, with particular focus on the regulation of pre-mRNA splicing, cleavage and polyadenylation. The effects of several post-translational modifications (i.e., sumoylation, ubiquitination, methylation, acetylation and phosphorylation) on the expression, subcellular localization, stability and affinity for RNA and protein partners of many RNA-binding proteins are highlighted. Moreover, examples of how some of the most common signal transduction pathways can modulate biological processes through changes in RNA processing regulation are illustrated. Lastly, we discuss challenges and opportunities of therapeutic approaches that correct RNA processing defects and target signaling molecules.


Sign in / Sign up

Export Citation Format

Share Document