scholarly journals Genetic determinants of endophytism in the Arabidopsis root mycobiome

2021 ◽  
Author(s):  
Fantin Mesny ◽  
Shingo Miyauchi ◽  
Thorsten Thiergart ◽  
Brigitte Pickel ◽  
Lea Atanasova ◽  
...  

AbstractRoots of Arabidopsis thaliana do not engage in symbiotic associations with mycorrhizal fungi but host taxonomically diverse fungal communities that influence health and disease states. We sequenced the genomes of 41 fungal isolates representative of the A. thaliana root mycobiota for comparative analysis with 79 other plant-associated fungi. We report that root mycobiota members evolved from ancestors with diverse lifestyles and retained large repertoires of plant cell wall-degrading enzymes (PCWDEs) and effector-like small secreted proteins. We identified a set of 84 gene families predicting best endophytism, including families encoding PCWDEs acting on xylan (GH10) and cellulose (AA9). These genes also belong to a core transcriptional response induced by phylogenetically-distant mycobiota members in A. thaliana roots. Recolonization experiments with individual fungi indicated that strains with detrimental effects in mono-association with the host not only colonize roots more aggressively than those with beneficial activities but also dominate in natural root samples. We identified and validated the pectin degrading enzyme family PL1_7 as a key component linking aggressiveness of endophytic colonization to plant health.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Fantin Mesny ◽  
Shingo Miyauchi ◽  
Thorsten Thiergart ◽  
Brigitte Pickel ◽  
Lea Atanasova ◽  
...  

AbstractThe roots of Arabidopsis thaliana host diverse fungal communities that affect plant health and disease states. Here, we sequence the genomes of 41 fungal isolates representative of the A. thaliana root mycobiota for comparative analysis with other 79 plant-associated fungi. Our analyses indicate that root mycobiota members evolved from ancestors with diverse lifestyles and retain large repertoires of plant cell wall-degrading enzymes (PCWDEs) and effector-like small secreted proteins. We identify a set of 84 gene families associated with endophytism, including genes encoding PCWDEs acting on xylan (family GH10) and cellulose (family AA9). Transcripts encoding these enzymes are also part of a conserved transcriptional program activated by phylogenetically-distant mycobiota members upon host contact. Recolonization experiments with individual fungi indicate that strains with detrimental effects in mono-association with the host colonize roots more aggressively than those with beneficial activities, and dominate in natural root samples. Furthermore, we show that the pectin-degrading enzyme family PL1_7 links aggressiveness of endophytic colonization to plant health.


2020 ◽  
Vol 21 (2) ◽  
pp. 483
Author(s):  
Wei Liu ◽  
Yingli Cai ◽  
Qianqian Zhang ◽  
Fang Shu ◽  
Lianfu Chen ◽  
...  

Morchella crassipes (Vent.) Pers., a typical yellow morel species with high economic value, is mainly distributed in the low altitude plains of Eurasia. However, rare research has been performed on its genomics and polarity, thus limiting its research and development. Here, we reported a fine physical map of the nuclear genome at the subchromosomal-scale and the complete mitochondrial genome of M. crassipes. The complete size of the nuclear genome was 56.7 Mb, and 23 scaffolds were assembled, with eight of them being complete chromosomes. A total of 11,565 encoding proteins were predicted. The divergence time analysis showed that M. crassipes representing yellow morels differentiated with black morels at ~33.98 Mya (million years), with 150 gene families contracted and expanded in M. crassipes versus the two black morels (M. snyderi and M. importuna). Furthermore, 409 CAZYme genes were annotated in M. crassipes, containing almost all plant cell wall degrading enzymes compared with the mycorrhizal fungi (truffles). Genomic annotation of mating type loci and amplification of the mating genes in the monospore population was conducted, the results indicated that M. crassipes is a heterothallic fungus. Additionally, a complete circular mitochondrial genome of M. crassipes was assembled, the size reached as large as 531,195 bp. It can be observed that the strikingly large size was the biggest up till now, coupled with 14 core conserved mitochondrial protein-coding genes, two rRNAs, 31 tRNAs, 51 introns, and 412 ncORFs. The total length of intron sequences accounted for 53.67% of the mitochondrial genome, with 19 introns having a length over 5 kb. Particularly, 221 of 412 ncORFs were distributed within 51 introns, and the total length of the ncORFs sequence accounted for 40.83% of the mitochondrial genome, and 297 ncORFs had expression activity in the mycelium stage, suggesting their potential functions in M. crassipes. Meanwhile, there was a high degree of repetition (51.31%) in the mitochondria of M. crassipes. Thus, the large number of introns, ncORFs and internal repeat sequences may contribute jointly to the largest fungal mitochondrial genome to date. The fine physical maps of nuclear genome and mitochondrial genome obtained in this study will open a new door for better understanding of the mysterious species of M. crassipes.


2018 ◽  
Author(s):  
Roy Kirsch ◽  
Grit Kunert ◽  
Heiko Vogel ◽  
Yannick Pauchet

AbstractMany protein families harbor pseudoenzymes that have lost the catalytic function of their enzymatically active counterparts. Assigning alternative function and importance to these proteins is challenging [1]. Because the evolution towards pseudoenzymes is driven by gene duplication, they often accumulate in multigene families. Plant cell wall-degrading enzymes (PCWDEs) are prominent examples of expanded gene families. The pectolytic glycoside hydrolase family 28 (GH28) allows herbivorous insects to break down the PCW polysaccharide pectin. GH28 in the Phytophaga clade of beetles contains many active enzymes but also many inactive counterparts. Using functional characterization, gene silencing, global transcriptome analyses and recordings of life history traits, we found that not only catalytically active but also inactive GH28 proteins are part of the same pectin-digesting pathway. The robustness and plasticity of this pathway and thus its importance for the beetle is supported by extremely high steady-state expression levels and counter-regulatory mechanisms. Unexpectedly, the impact of pseudoenzymes on the pectin-digesting pathway in Phytophaga beetles exceeds even the influence of their active counterparts, such as a lowered efficiency of food-to-energy conversion and a prolongation of the developmental period.


2013 ◽  
Vol 12 (3) ◽  
pp. 135-144 ◽  
Author(s):  
Erik R. Swenson

Hypoxic vasoconstriction in the lung is a unique and fundamental characteristic of the pulmonary circulation. It functions in health and disease states to better preserve ventilation-perfusion matching by diverting blood flow to better ventilated regions when local ventilation is compromised. As more areas of lung become hypoxic either with high altitude or global lung disease, then hypoxic pulmonary vasoconstriction (HPV) becomes less effective in ventilation-perfusion matching and can lead to pulmonary hypertension. HPV is intrinsic to the vascular smooth muscle and its mechanisms remain poorly understood. In addition, the pulmonary vascular endothelium, red cells, lung innervation, and numerous circulating vasoactive agents also affect the strength of HPV. This review will discuss the pathophysiology of HPV and address its role in pulmonary hypertension associated with World Health Organization Group 3 diseases. When sustained beyond many hours, HPV may initiate pulmonary vascular remodeling and lead to more fixed and less oxygen-responsive pulmonary hypertension if the hypoxic stimulus is maintained.


2020 ◽  
Vol 27 (29) ◽  
pp. 4840-4854 ◽  
Author(s):  
Chrysoula-Evangelia Karachaliou ◽  
Hubert Kalbacher ◽  
Wolfgang Voelter ◽  
Ourania E. Tsitsilonis ◽  
Evangelia Livaniou

Prothymosin alpha (ProTα) is a highly acidic polypeptide, ubiquitously expressed in almost all mammalian cells and tissues and consisting of 109 amino acids in humans. ProTα is known to act both, intracellularly, as an anti-apoptotic and proliferation mediator, and extracellularly, as a biologic response modifier mediating immune responses similar to molecules termed as “alarmins”. Antibodies and immunochemical techniques for ProTα have played a leading role in the investigation of the biological role of ProTα, several aspects of which still remain unknown and contributed to unraveling the diagnostic and therapeutic potential of the polypeptide. This review deals with the so far reported antibodies along with the related immunodetection methodology for ProTα (immunoassays as well as immunohistochemical, immunocytological, immunoblotting, and immunoprecipitation techniques) and its application to biological samples of interest (tissue extracts and sections, cells, cell lysates and cell culture supernatants, body fluids), in health and disease states. In this context, literature information is critically discussed, and some concluding remarks are presented.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Huai-Jun Xue ◽  
Yi-Wei Niu ◽  
Kari A. Segraves ◽  
Rui-E Nie ◽  
Ya-Jing Hao ◽  
...  

Abstract Background Altica (Coleoptera: Chrysomelidae) is a highly diverse and taxonomically challenging flea beetle genus that has been used to address questions related to host plant specialization, reproductive isolation, and ecological speciation. To further evolutionary studies in this interesting group, here we present a draft genome of a representative specialist, Altica viridicyanea, the first Alticinae genome reported thus far. Results The genome is 864.8 Mb and consists of 4490 scaffolds with a N50 size of 557 kb, which covered 98.6% complete and 0.4% partial insect Benchmarking Universal Single-Copy Orthologs. Repetitive sequences accounted for 62.9% of the assembly, and a total of 17,730 protein-coding gene models and 2462 non-coding RNA models were predicted. To provide insight into host plant specialization of this monophagous species, we examined the key gene families involved in chemosensation, detoxification of plant secondary chemistry, and plant cell wall-degradation. Conclusions The genome assembled in this work provides an important resource for further studies on host plant adaptation and functionally affiliated genes. Moreover, this work also opens the way for comparative genomics studies among closely related Altica species, which may provide insight into the molecular evolutionary processes that occur during ecological speciation.


Nutrients ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 2428
Author(s):  
Małgorzata Guz ◽  
Witold Jeleniewicz ◽  
Anna Malm ◽  
Izabela Korona-Glowniak

A still growing interest between human nutrition in relation to health and disease states can be observed. Dietary components shape the composition of microbiota colonizing our gastrointestinal tract which play a vital role in maintaining human health. There is a strong evidence that diet, gut microbiota and their metabolites significantly influence our epigenome, particularly through the modulation of microRNAs. These group of small non-coding RNAs maintain cellular homeostasis, however any changes leading to impaired expression of miRNAs contribute to the development of different pathologies, including neoplastic diseases. Imbalance of intestinal microbiota due to diet is primary associated with the development of colorectal cancer as well as other types of cancers. In the present work we summarize current knowledge with particular emphasis on diet-microbiota-miRNAs axis and its relation to the development of colorectal cancer.


2017 ◽  
Vol 30 (11) ◽  
pp. 886-895 ◽  
Author(s):  
Maria Chiara Paccanaro ◽  
Luca Sella ◽  
Carla Castiglioni ◽  
Francesca Giacomello ◽  
Ana Lilia Martínez-Rocha ◽  
...  

Endo-polygalacturonases (PGs) and xylanases have been shown to play an important role during pathogenesis of some fungal pathogens of dicot plants, while their role in monocot pathogens is less defined. Pg1 and xyr1 genes of the wheat pathogen Fusarium graminearum encode the main PG and the major regulator of xylanase production, respectively. Single- and double-disrupted mutants for these genes were obtained to assess their contribution to fungal infection. Compared with wild-type strain, the ∆pg mutant showed a nearly abolished PG activity, slight reduced virulence on soybean seedlings, but no significant difference in disease symptoms on wheat spikes; the ∆xyr mutant was strongly reduced in xylanase activity and moderately reduced in cellulase activity but was as virulent as wild type on both soybean and wheat plants. Consequently, the ΔpgΔxyr double mutant was impaired in xylanase, PG, and cellulase activities but, differently from single mutants, was significantly reduced in virulence on both plants. These findings demonstrate that the concurrent presence of PG, xylanase, and cellulase activities is necessary for full virulence. The observation that the uronides released from wheat cell wall after a F. graminearum PG treatment were largely increased by the fungal xylanases suggests that these enzymes act synergistically in deconstructing the plant cell wall.


Sign in / Sign up

Export Citation Format

Share Document