scholarly journals Impact of vitamin B12 on rhamnose metabolism, stress defense and in-vitro virulence of Listeria monocytogenes

2021 ◽  
Author(s):  
Zhe Zeng ◽  
Lucas M. Wijnands ◽  
Sjef Boeren ◽  
Eddy J. Smid ◽  
Richard A. Notebaart ◽  
...  

Listeria monocytogenes is a facultative anaerobe which can cause a severe food-borne infection known as listeriosis. Rhamnose is a deoxyhexose sugar abundant in a range of environments, including the human intestine, and can be degraded by L. monocytogenes in aerobic and anaerobic conditions into lactate, acetate and 1,2-propanediol. Our previous study showed that addition of vitamin B12 stimulates anaerobic growth of L. monocytogenes on rhamnose due to the activation of bacterial microcompartment (BMC)-dependent 1,2-propanediol utilization with concomitant production of propionate and propanol. Notably, anaerobic propanediol metabolism has been linked to virulence of enteric pathogens including Salmonella spp. and L. monocytogenes. In this study we investigate the impact of B12 on aerobic and anerobic growth of L. monocytogenes on rhamnose, and observed growth stimulation and pdu BMC activation only in anaerobically grown cells with B12 added to the medium. Comparative Caco-2 virulence assays, showed that these pdu BMC induced cells have significantly higher translocation efficiency compared to aerobically grown cells (without and with added B12) and non-induced anaerobically grown cells, while adhesion and invasion capacity is similar for all cells. Comparative proteomics analysis showed specific and overlapping responses linked to metabolic shifts, activation of stress defense proteins and virulence factors, with RNA polymerase sigma factor SigL; teichoic acids export ATP-binding protein, TagH; DNA repair and protection proteins RadA and DPS; and glutathione synthase GshAB previously linked to activation of virulence response in L. monocytogenes, uniquely upregulated in anaerobically rhamnose grown pdu BMC induced cells. Our results shed new light into B12 impact on L. monocytogenes competitive fitness and virulence.

2021 ◽  
Author(s):  
Zhe Zeng ◽  
Siming Li ◽  
Sjef Boeren ◽  
Eddy J. Smid ◽  
Richard A. Notebaart ◽  
...  

AbstractThe food-borne pathogen Listeria monocytogenes is able to form proteinaceous organelles called bacterial microcompartments (BMCs) that optimize the utilization of substrates, such as 1,2-propanediol, and confer an anaerobic growth advantage. Rhamnose is a deoxyhexose sugar abundant in a range of environments including the human intestine, and can be degraded in anaerobic conditions into 1,2-propanediol, next to acetate and lactate. Rhamnose-derived 1,2-propanediol has been found to link with BMCs in a limited number of commensal human colonic species and some human pathogens such as Salmonella enterica, but the involvement of BMCs in rhamnose metabolism and potential physiological effects on L. monocytogenes are still unknown. In this study, we firstly test the effect of rhamnose uptake and utilization on anaerobic growth of L. monocytogenes EGDe without and with added vitamin B12, followed by metabolic analysis. We unveil that the vitamin B12-dependent activation of pdu stimulates metabolism and anaerobic growth of L. monocytogenes EGDe on rhamnose via 1,2-propanediol degradation into 1-propanol and propionate. Transmission electron microscopy of pdu-induced cells shows that BMCs are formed and additional proteomics experiments confirm expression of pdu BMC shell proteins and enzymes. Finally, we discuss physiological effects and energy efficiency of L. monocytogenes pdu BMC-driven anaerobic rhamnose metabolism and impact on competitive fitness in environments such as the human intestine.


2020 ◽  
Vol 86 (22) ◽  
Author(s):  
Tracey Lee Peters ◽  
Yaxiong Song ◽  
Daniel W. Bryan ◽  
Lauren K. Hudson ◽  
Thomas G. Denes

ABSTRACT Bacteriophages (phages) are currently available for use by the food industry to control the foodborne pathogen Listeria monocytogenes. Although phage biocontrols are effective under specific conditions, their use can select for phage-resistant bacteria that repopulate phage-treated environments. Here, we performed short-term coevolution experiments to investigate the impact of single phages and a two-phage cocktail on the regrowth of phage-resistant L. monocytogenes and the adaptation of the phages to overcome this resistance. We used whole-genome sequencing to identify mutations in the target host that confer phage resistance and in the phages that alter host range. We found that infections with Listeria phages LP-048, LP-125, or a combination of both select for different populations of phage-resistant L. monocytogenes bacteria with different regrowth times. Phages isolated from the end of the coevolution experiments were found to have gained the ability to infect phage-resistant mutants of L. monocytogenes and L. monocytogenes strains previously found to be broadly resistant to phage infection. Phages isolated from coinfected cultures were identified as recombinants of LP-048 and LP-125. Interestingly, recombination events occurred twice independently in a locus encoding two proteins putatively involved in DNA binding. We show that short-term coevolution of phages and their hosts can be utilized to obtain mutant and recombinant phages with adapted host ranges. These laboratory-evolved phages may be useful for limiting the emergence of phage resistance and for targeting strains that show general resistance to wild-type (WT) phages. IMPORTANCE Listeria monocytogenes is a life-threatening bacterial foodborne pathogen that can persist in food processing facilities for years. Phages can be used to control L. monocytogenes in food production, but phage-resistant bacterial subpopulations can regrow in phage-treated environments. Coevolution experiments were conducted on a Listeria phage-host system to provide insight into the genetic variation that emerges in both the phage and bacterial host under reciprocal selective pressure. As expected, mutations were identified in both phage and host, but additionally, recombination events were shown to have repeatedly occurred between closely related phages that coinfected L. monocytogenes. This study demonstrates that in vitro evolution of phages can be utilized to expand the host range and improve the long-term efficacy of phage-based control of L. monocytogenes. This approach may also be applied to other phage-host systems for applications in biocontrol, detection, and phage therapy.


Biology ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 69
Author(s):  
Zuzanna Rzepka ◽  
Jakub Rok ◽  
Mateusz Maszczyk ◽  
Artur Beberok ◽  
Justyna Magdalena Hermanowicz ◽  
...  

The most important biological function of vitamin B12 is to accomplish DNA synthesis, which is necessary for cell division. Cobalamin deficiency may be especially acute for rapidly dividing cells, such as glioblastoma cells. Therefore, cobalamin antagonists offer a medicinal potential for developing anti-glioma agents. In the present study, we developed an in vitro model of cobalamin deficiency in glioblastoma cells. Long-term treatment of cells with the cobalamin analogue, hydroxycobalamin [c-lactam] (HCCL) was applied to induce an increase of hypocobalaminemia biomarker. Cytometric assays demonstrated that vitamin B12 promoted glioblastoma cells proliferation, whereas the treatment of cells with HCCL caused a dramatic inhibition of cell proliferation and an induction of cell cycle arrest at the G2/M phase. Vitamin B12 counteracted all the observed effects of HCCL. In the in silico study, we characterized the molecular interactions between HCCL and transcobalamin II (TCII). We have demonstrated that HCCL shares similar interactions with TCII as naturally occurring cobalamins and therefore may act as a competitive inhibitor of this key transporter protein. We assessed the impact of HCCL on the mortality or developmental malformations of zebrafish embryos. Collectively, our findings suggest that the use of cobalamin transport antagonists as potential anti-glioma agents would be worth exploring further.


mSphere ◽  
2021 ◽  
Author(s):  
Zhe Zeng ◽  
Siming Li ◽  
Sjef Boeren ◽  
Eddy J. Smid ◽  
Richard A. Notebaart ◽  
...  

Listeria monocytogenes is a foodborne pathogen causing severe illness and, as such, it is crucial to understand the molecular mechanisms contributing to its survival strategy and pathogenicity. Rhamnose is a deoxyhexose sugar abundant in a range of environments, including the human intestine, and can be degraded in anaerobic conditions into 1,2-propanediol.


Nutrients ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1272 ◽  
Author(s):  
Katarzyna Śliżewska ◽  
Agnieszka Chlebicz-Wójcik

Prebiotics are food components that are selectively fermented by beneficial microbiota and which confer a health benefit. The aim of the study was to select a prebiotic for the chosen probiotic strains to create a synbiotic. The impact of prebiotics (inulin, maltodextrin, corn starch, β-glucan, and apple pectin) on five Lactobacillus spp. strains’ growth and metabolites synthesis (lactic, acetic, propionic, and butyric acids, ethanol, and acetaldehyde) was tested by the plate count method and by high-performance liquid chromatography, respectively. Moreover, the differences in the ratio of D(−) and L(+) lactate isomers produced by Lactobacillus spp., as well as variations in the probiotics’ enzymatic profiles associated with the prebiotic used for cultivation, were determined with a Megazyme rapid assay kit and API® ZYM assay, accordingly. Finally, the influence of the carbon source (prebiotic) used on the antagonistic activity of the probiotic strains towards pathogenic bacteria, such as Salmonella spp. or Listeria monocytogenes was analyzed in the co-cultures. The results showed that the growth, metabolic profile, and antagonistic activity of the probiotics towards selected pathogens were the most favorable when 2% (w/v) of inulin was used. Therefore, the combination of inulin with selected probiotics is a promising synbiotic mixture.


2021 ◽  
Author(s):  
Zhe Zeng ◽  
Lucas M. Wijnands ◽  
Sjef Boeren ◽  
Eddy J. Smid ◽  
Richard A. Notebaart ◽  
...  

AbstractBacterial microcompartment (BMC) dependent ethanolamine (eut) and propanediol utilization (pdu) has recently been shown to stimulate anaerobic growth of Listeria monocytogenes. This metabolic repertoire conceivably contributes to the competitive fitness of L. monocytogenes in the human gastrointestinal (GI) tract, where these compounds become available following phospholipid degradation and mucus-derived rhamnose metabolism by commensal microbiota. Previous transcriptomics and mutant studies of eut and pdu L. monocytogenes suggested a possible role of eut and pdu BMC metabolism in transmission in foods and pathogenicity, but data on a potential role of L. monocytogenes interaction with human cells is currently absent. First, we ask which cellular systems are expressed in the activation of eut and pdu BMC metabolism and the extent to which these systems are conserved between the states. We find common and unique systems related to metabolic shifts, stress and virulence factors. Next, we hypothesize that these common and unique activated cellular systems contribute to a role in the interaction of L. monocytogenes interaction with human cells. We present evidence that metabolically primed L. monocytogenes with active eut and pdu BMCs, as confirmed by metabolic analysis, transmission electron microscopy and proteomics, show significantly enhanced translocation efficacy compared to non-induced cells in a trans-well assay using Caco-2 cells, while adhesion and invasion capacity was similar. Taken together, our results provide insights into the possible key cellular players that drive translocation efficacy upon eut and pdu BMC activation.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0259687
Author(s):  
Emilia Fernanda Agostinho Davanzo ◽  
Rebecca Lavarini dos Santos ◽  
Virgilio Hipólito de Lemos Castro ◽  
Joana Marchesini Palma ◽  
Bruno Rocha Pribul ◽  
...  

Listeria monocytogenes and Salmonella spp. are considered important foodborne pathogens that are commonly associated with foods of animal origin. The aim of this study was to perform molecular characterization of L. monocytogenes and Salmonella spp. isolated from biofilms of cattle and poultry slaughterhouses located in the Federal District and State of Goiás, Brazil. Fourteen L. monocytogenes isolates and one Salmonella sp. were detected in poultry slaughterhouses. No isolates were detected in cattle slaughterhouses. All L. monocytogenes isolates belonged to lineage II, and 11 different pulsotypes were detected. Pulsed-field gel electrophoresis analysis revealed the dissemination of two strains within one plant, in addition to the regional dissemination of one of them. The Salmonella isolate was identified via whole genome sequencing as Salmonella enterica serovar Minnesota ST548. In the sequence analysis, no premature stop codons were detected in the inlA gene of Listeria. All isolates demonstrated the ability to adhere to Caco-2 cells, while 50% were capable of invading them. Antimicrobial resistance was detected in 57.1% of the L. monocytogenes isolates, and resistance to sulfonamide was the most common feature. The tetC, ermB, and tetM genes were detected, and four isolates were classified as multidrug-resistant. Salmonella sp. was resistant to nine antimicrobials and was classified as multidrug-resistant. Resistance genes qnrB19, blaCMY-2, aac(6’)-Iaa, sul2, and tetA, and a mutation in the parC gene were detected. The majority (78.5%) of the L. monocytogenes isolates were capable of forming biofilms after incubation at 37°C for 24 h, and 64.3% were capable of forming biofilms after incubation at 12°C for 168 h. There was no statistical difference in the biofilm-forming capacity under the different evaluated conditions. Salmonella sp. was capable of forming biofilms at both tested temperatures. Biofilm characterization was confirmed by collecting the samples consistently, at the same sampling points, and by assessing biofilm formation in vitro. These results highlight the potential risk of cross-contamination in poultry slaughterhouses and the importance of surveillance and pathogen control maintenance programs within the meat production industry.


2020 ◽  
Vol 86 (17) ◽  
Author(s):  
Evangelia A. Zilelidou ◽  
Varvara Milina ◽  
Spiros Paramithiotis ◽  
Georgia Zoumpopoulou ◽  
Sofia V. Poimenidou ◽  
...  

ABSTRACT Interactions between Listeria monocytogenes and food-associated or environmental bacteria are critical not only for the growth but also for a number of key biological processes of the microorganism. In this regard, limited information exists on the impact of other microorganisms on the virulence of L. monocytogenes. In this study, the growth of L. monocytogenes was evaluated in a single culture or in coculture with L. innocua, Bacillus subtilis, Lactobacillus plantarum, or Pseudomonas aeruginosa in tryptic soy broth (10°C/10 days and 37°C/24 h). Transcriptional levels of 9 key virulence genes (inlA, inlB, inlC, inlJ, sigB, prfA, hly, plcA, and plcB) and invasion efficiency and intracellular growth in Caco-2 cells were determined for L. monocytogenes following growth in mono- or coculture for 3 days at 10°C or 9 h at 37°C. The growth of L. monocytogenes was negatively affected by the presence of L. innocua and B. subtilis, while the effect of cell-to-cell contact on L. monocytogenes growth was dependent on the competing microorganism. Cocultivation affected the in vitro virulence properties of L. monocytogenes in a microorganism-specific manner, with L. innocua mainly enhancing and B. subtilis reducing the invasion of the pathogen in Caco-2 cells. Assessment of the mRNA levels of L. monocytogenes virulence genes in the presence of the four tested bacteria revealed a complex pattern in which the observed up- or downregulation was only partially correlated with growth or in vitro virulence and mainly suggested that L. monocytogenes may display a microorganism-specific transcriptional response. IMPORTANCE Listeria monocytogenes is the etiological agent of the severe foodborne disease listeriosis. Important insight regarding the physiology and the infection biology of this microorganism has been acquired in the past 20 years. However, despite the fact that L. monocytogenes coexists with various microorganisms throughout its life cycle and during transmission from the environment to foods and then to the host, there is still limited knowledge related to the impact of surrounding microorganisms on L. monocytogenes' biological functions. In this study, we showed that L. monocytogenes modulates specific biological activities (i.e., growth and virulence potential) as a response to coexisting microorganisms and differentially alters the expression of virulence-associated genes when confronted with different bacterial genera and species. Our work suggests that the interaction with different bacteria plays a key role in the survival strategies of L. monocytogenes and supports the need to incorporate biotic factors into the research conducted to identify mechanisms deployed by this organism for establishment in different environments.


Foods ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2972
Author(s):  
Tareq M. Osaili ◽  
Anas A. Al-Nabulsi ◽  
Yasmeen M. Al Sheikh ◽  
Akram R. Alaboudi ◽  
Amin N. Olaimat ◽  
...  

Tahini (sesame paste) is a traditional food. Numerous foodborne outbreaks have been associated with it. This study aimed to (i) explore the efficiency of 2450 MHz microwave heating at 220, 330, 440, 550, and 660 W on the inactivation of Salmonella spp, Escherichia coli O157:H7, and Listeria monocytogenes in tahini; (ii) determine the impact of desiccation and starvation stresses on pathogen survival; (iii) assess the impact of microwave heating on the physicochemical characteristics of tahini. The inoculated microorganisms in tahini were reduced with higher microwave power levels (p < 0.05) and longer exposure times. The D-values of unstressed Salmonella spp., Escherichia coli O157:H7, and L. monocytogenes ranged from 6.18 to 0.50 min, 6.08 to 0.50 min, and 4.69 to 0.48 min, respectively, at power levels of 220 to 660 W, with z-values of 410, 440, and 460 W, respectively. Generally, desiccation and starvation stress levels prior to heating increased microbial resistance to heat treatment. Microwave heating did not affect acid, peroxide, p-anisidine, or color values of tahini up to 90 °C. These findings reveal microwave heating as a potential method for lowering the risk of Salmonella spp., E. coli O157:H7 and L. monocytogenes in tahini with no compromise on quality.


Sign in / Sign up

Export Citation Format

Share Document