scholarly journals Cluster expansion of apolipoprotein D (ApoD) genes in teleost fishes

2018 ◽  
Author(s):  
Langyu Gu ◽  
Canwei Xia

AbstractBackgroundGene and genome duplication play important roles in the evolution of gene function. Compared to individual duplicated genes, gene clusters attract particular attentions considering their frequent associations with innovation and adaptation. Here, we report for the first time the expansion of the ligand (e.g., pheromone and hormone)-transporter genes, apolipoprotein D (ApoD) genes in a cluster, specific to teleost fishes.ResultsThe single ApoD gene in the ancestor expands in two clusters with a dynamic evolutionary pattern in teleost fishes. Based on comparative genomic and transcriptomic analyses, protein 3D structure comparison, evolutionary rate detection and breakpoint detection, orthologous genes show conserved expression patterns. Lineage-specific duplicated genes that are under positive selection evolved specific and even new expression profiles. Different duplicates show high tissue-specific expression patterns (e.g., skin, eye, anal fin pigmentation patterns, gonads, gills, spleen and lower pharyngeal jaw). Cluster analyses based on protein 3D structure comparisons, especially the four loops at the opening side, show segregation patterns with different duplicates. Duplicated ApoD genes are predicted to be associated with forkhead transcription factors and MAPK genes, and they are located next to the breakpoints of genome rearrangements.ConclusionsHere, we report the expansion of ApoD genes specific to teleost fishes in a cluster manner for the first time. Neofunctionalization and subfunctionalization were observed at both protein and expression levels after duplication. Evidence from different aspects, i.e. abnormal expression induced disease in human, fish-specific expansion, predicted associations with forkhead transcription factors and MAPK genes, highly specific expression patterns in tissues related to sexual selection and adaptation, duplicated genes that are under positive selection, and their locations next to breakpoints of genome rearrangement, suggests the potential advantageous roles of ApoD genes in teleost fishes. Cluster expansion of ApoD genes specific to teleost fishes thus provides an ideal evo-devo model for studying gene duplication, cluster maintenance and new gene function emergence.

2006 ◽  
Vol 17 (2) ◽  
pp. 585-597 ◽  
Author(s):  
Fang Liu ◽  
Nabendu Pore ◽  
Mijin Kim ◽  
K. Ranh Voong ◽  
Melissa Dowling ◽  
...  

Histone deacetylases mediate critical cellular functions but relatively little is known about mechanisms controlling their expression, including expression of HDAC4, a class II HDAC implicated in the modulation of cellular differentiation and viability. Endogenous HDAC4 mRNA, protein levels and promoter activity were all readily repressed by mithramycin, suggesting regulation by GC-rich DNA sequences. We validated consensus binding sites for Sp1/Sp3 transcription factors in the HDAC4 promoter through truncation studies and targeted mutagenesis. Specific and functional binding by Sp1/Sp3 at these sites was confirmed with chromatin immunoprecipitation (ChIP) and electromobility shift assays (EMSA). Cotransfection of either Sp1 or Sp3 with a reporter driven by the HDAC4 promoter led to high activities in SL2 insect cells (which lack endogenous Sp1/Sp3). In human cells, restored expression of Sp1 and Sp3 up-regulated HDAC4 protein levels, whereas levels were decreased by RNA-interference-mediated knockdown of either protein. Finally, variable levels of Sp1 were in concordance with that of HDAC4 in a number of human tissues and cancer cell lines. These studies together characterize for the first time the activity of the HDAC4 promoter, through which Sp1 and Sp3 modulates expression of HDAC4 and which may contribute to tissue or cell-line-specific expression of HDAC4.


Cancers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2154 ◽  
Author(s):  
Yaqi Tang ◽  
Simon Durand ◽  
Stéphane Dalle ◽  
Julie Caramel

Transcription factors, extensively described for their role in epithelial–mesenchymal transition (EMT-TFs) in epithelial cells, also display essential functions in the melanocyte lineage. Recent evidence has shown specific expression patterns and functions of these EMT-TFs in neural crest-derived melanoma compared to carcinoma. Herein, we present an update of the specific roles of EMT-TFs in melanocyte differentiation and melanoma progression. As major regulators of phenotype switching between differentiated/proliferative and neural crest stem cell-like/invasive states, these factors appear as major drivers of intra-tumor heterogeneity and resistance to treatment in melanoma, which opens new avenues in terms of therapeutic targeting.


2019 ◽  
Vol 40 (4) ◽  
pp. 557-572 ◽  
Author(s):  
Wenjie Ding ◽  
Qixia Ouyang ◽  
Yuli Li ◽  
Tingting Shi ◽  
Ling Li ◽  
...  

Abstract WRKY transcription factors, one of the largest transcription factor families, play important roles in regulating the synthesis of secondary metabolites. In sweet osmanthus (Osmanthus fragrans), the monoterpenes have been demonstrated as the most important volatile compounds, and the W-box, which is the cognate binding site of WRKY transcription factors, could be identified in most of the terpene-synthesis-related genes’ promoters. However, the role of the WRKY family in terpene synthesis in sweet osmanthus has rarely been examined. In this study, 154 WRKY genes with conserved WRKY domain were identified and classified into three groups. The group II was further divided into five subgroups, and almost all members of IId contained a plant zinc cluster domain. Eight OfWRKYs (OfWRKY7/19/36/38/42/84/95/139) were screened from 20 OfWRKYs for their flower-specific expression patterns in different tissues. Simultaneously, the expression patterns of OfWRKYs and emission patterns of volatile compounds during the flowering process were determined and gas chromatography-mass spectrometry results showed that monoterpenes, such as linalool and ocimene, accounted for the highest proportion, contributing to the floral scent of sweet osmanthus in two cultivars. In addition, correlation analysis revealed the expression patterns of OfWRKYs (OfWRKY7/19/36/139) were each correlated with distinct monoterpenes (linalool, linalool derivatives, ocimene and ocimene derivatives). Subcellular localization analysis showed that p35S::GFP–OfWRKY7/38/95/139 were localized in the nucleus and OfWRKY139 had very strong transactivation activity. Collectively, the results indicated potential roles of OfWRKY139 and OfWRKYs with plant zinc cluster domain in regulating synthesis of aromatic compounds in sweet osmanthus, laying the foundation for use of OfWRKYs to improve the aroma of ornamental plants.


2019 ◽  
Vol 20 (8) ◽  
pp. 1914 ◽  
Author(s):  
Yifei Mou ◽  
Yuanyuan Liu ◽  
Shujun Tian ◽  
Qiping Guo ◽  
Chengshe Wang ◽  
...  

The 12-oxo-phytodienoic acid reductases (OPRs), which belong to the old yellow enzyme (OYE) family, are flavin mononucleotide (FMN)-dependent oxidoreductases with critical functions in plants. Despite the clear characteristics of growth and development, as well as the defense responses in Arabidopsis, tomato, rice, and maize, the potential roles of OPRs in wheat are not fully understood. Here, forty-eight putative OPR genes were found and classified into five subfamilies, with 6 in sub. I, 4 in sub. II, 33 in sub. III, 3 in sub. IV, and 2 in sub. V. Similar gene structures and conserved protein motifs of TaOPRs in wheat were identified in the same subfamilies. An analysis of cis-acting elements in promoters revealed that the functions of OPRs in wheat were mostly related to growth, development, hormones, biotic, and abiotic stresses. A total of 14 wheat OPR genes were identified as tandem duplicated genes, while 37 OPR genes were segmentally duplicated genes. The expression patterns of TaOPRs were tissue- and stress-specific, and the expression of TaOPRs could be regulated or induced by phytohormones and various stresses. Therefore, there were multiple wheat OPR genes, classified into five subfamilies, with functional diversification and specific expression patterns, and to our knowledge, this was the first study to systematically investigate the wheat OPR gene family. The findings not only provide a scientific foundation for the comprehensive understanding of the wheat OPR gene family, but could also be helpful for screening more candidate genes and breeding new varieties of wheat, with a high yield and stress resistance.


2012 ◽  
Vol 91 (12) ◽  
pp. 1147-1153 ◽  
Author(s):  
T. Ohira ◽  
D. Spear ◽  
N. Azimi ◽  
V. Andreeva ◽  
P.C. Yelick

Our long-term goal is to identify and characterize molecular mechanisms regulating tooth development, including those mediating the critical dental epithelial-dental mesenchymal (DE-DM) cell interactions required for normal tooth development. The goal of this study was to investigate Chemerin (Rarres2)/ChemR23(Cmklr1) signaling in DE-DM cell interactions in normal tooth development. Here we present, for the first time, tissue-specific expression patterns of Chemerin and ChemR23 in mouse tooth development. We show that Chemerin is expressed in cultured DE progenitor cells, while ChemR23 is expressed in cultured DM cells. Moreover, we demonstrate that ribosomal protein S6 (rS6) and Akt, downstream targets of Chemerin/ChemR23 signaling, are phosphorylated in response to Chemerin/ChemR23 signaling in vitro and are expressed in mouse tooth development. Together, these results suggest roles for Chemerin/ChemR23-mediated DE-DM cell signaling during tooth morphogenesis.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Jing Ma ◽  
Jia-xi Dai ◽  
Xiao-wei Liu ◽  
Duo Lin

Abstract Background BBX transcription factors are a kind of zinc finger transcription factors with one or two B-box domains, which partilant in plant growth, development and response to abiotic or biotic stress. The BBX family has been identified in Arabidopsis, rice, tomato and some other model plant genomes. Results Here, 24 CaBBX genes were identified in pepper (Capsicum annuum L.), and the phylogenic analysis, structures, chromosomal location, gene expression patterns and subcellular localizations were also carried out to understand the evolution and function of CaBBX genes. All these CaBBXs were divided into five classes, and 20 of them distributed in 11 of 12 pepper chromosomes unevenly. Most duplication events occurred in subgroup I. Quantitative RT-PCR indicated that several CaBBX genes were induced by abiotic stress and hormones, some had tissue-specific expression profiles or differentially expressed at developmental stages. Most of CaBBX members were predicated to be nucleus-localized in consistent with the transient expression assay by onion inner epidermis of the three tested CaBBX members (CaBBX5, 6 and 20). Conclusion Several CaBBX genes were induced by abiotic stress and exogenous phytohormones, some expressed tissue-specific and variously at different developmental stage. The detected CaBBXs act as nucleus-localized transcription factors. Our data might be a foundation in the identification of CaBBX genes, and a further understanding of their biological function in future studies.


Reproduction ◽  
2010 ◽  
Vol 140 (1) ◽  
pp. 57-71 ◽  
Author(s):  
Emma Redon ◽  
Adrien Bosseboeuf ◽  
Claire Rocancourt ◽  
Corinne Da Silva ◽  
Patrick Wincker ◽  
...  

In the dogfish testis, the cystic arrangement and polarization of germ cell stages make it possible to observe all stages of spermatogenesis in a single transverse section. By taking advantage of the zonation of this organ, we have used suppressive subtractive libraries construction, real-time PCR, andin situhybridization to identify 32 dogfish genes showing differential expressions during spermatogenesis. These include homologs of genes already known to be expressed in the vertebrate testis, but found here to be specifically expressed either in pre-meiotic and/or meiotic zones (ribosomal protein S8, high-mobility group box 3, ubiquitin carboxyl-terminal esterase L3, 20β-hydroxysteroid dehydrogenase, or cyclophilin B) or in post-meiotic zone (speriolin, Soggy, zinc finger protein 474, calreticulin, or phospholipase c-ζ). We also report, for the first time, testis-specific expression patterns for dogfish genes coding for A-kinase anchor protein 5, ring finger protein 152, or F-box only protein 7. Finally, the study highlights the differential expression of new sequences whose identity remains to be assessed. This study provides the first molecular characterization of spermatogenesis in a chondrichthyan, a key species to gain insight into the evolution of this process in gnathostomes.


2016 ◽  
Author(s):  
Neslihan Avcu ◽  
Nacho Molina

The diffusion of regulatory proteins within the nucleus plays a crucial role in the dynamics of transcriptional regulation. The standard model assumes a 3D plus ID diffusion process: regulatory proteins either move freely in solution or slide on DNA. This model however does not considered the 3D structure of chromatin. Here we proposed a multi-scale stochastic model that integrates, for the first time, high-resolution information on chromatin structure as well as DNA-protein interactions. The dynamics of transcription factors was modeled as a slide plus jump diffusion process on a chromatin network based on pair-wise contact maps obtained from high-resolution Hi-C experiments. Our model allowed us to uncover the effects of chromatin structure on transcription factor occupancy profiles and target search times. Finally, we showed that binding sites clustered on few topological associated domains leading to a higher local concentration of transcription factors which could reflect an optimal strategy to efficiently use limited transcriptional resources.


2017 ◽  
Vol 11 (2) ◽  
pp. 145 ◽  
Author(s):  
Marcelo Tigre Moura ◽  
Pamela Ramos-Deus ◽  
José Carlos Ferreira-Silva ◽  
Priscila Germany Corrêa Silva ◽  
Ludymila Furtado Cantanhêde ◽  
...  

The expression of a subset of transcription factors is enriched in early preimplantation embryos, which contributes to their cellular plasticity. RONIN, NANOG and its associated proteins are PluripotencyAssociated Transcription Factors (PATF) that control relevant downstream pathways in pluripotent stem cells, but their activity in early embryos remained less understood. The work was aimed to determine the expression of RONIN and four NANOG-associated PATFs in goat preimplantation embryos. Goat embryos were produced in vitro by parthenogenetic activation. Gene transcripts of cleavage-stage embryos were investigated by reverse transcriptase-polymerase chain reaction (RT-PCR), while blastocysts were analyzed by both RTPCR and quantitative RT-PCR (RT-qPCR) assays. Gene transcripts of ZFP281, NAC1, and NR0B1 were detected in cleavage-stage embryos, while RONIN and OCT4 were not found expressed. Detection in blastocysts by RT-PCR confirmed the activity of NR0B1, RONIN, and OCT4. Moreover, all five PATF were detected in blastocysts by RT-qPCR (ZFP281, NAC1, RONIN, OCT4, and NR0B1). In conclusion, RONIN and NANOG-associated proteins are active during goat parthenogenetic preimplantation development and hold stage-specific expression patterns.


Development ◽  
2020 ◽  
Vol 147 (14) ◽  
pp. dev187922 ◽  
Author(s):  
Candace S. Y. Chan ◽  
Nicolas Lonfat ◽  
Rong Zhao ◽  
Alexander E. Davis ◽  
Liang Li ◽  
...  

ABSTRACTTranscription factors (TFs) are often used repeatedly during development and homeostasis to control distinct processes in the same and/or different cellular contexts. Considering the limited number of TFs in the genome and the tremendous number of events that need to be regulated, re-use of TFs is necessary. We analyzed how the expression of the homeobox TF, orthodenticle homeobox 2 (Otx2), is regulated in a cell type- and stage-specific manner during development in the mouse retina. We identified seven Otx2 cis-regulatory modules (CRMs), among which the O5, O7 and O9 CRMs mark three distinct cellular contexts of Otx2 expression. We discovered that Otx2, Crx and Sox2, which are well-known TFs regulating retinal development, bind to and activate the O5, O7 or O9 CRMs, respectively. The chromatin status of these three CRMs was found to be distinct in vivo in different retinal cell types and at different stages. We conclude that retinal cells use a cohort of TFs with different expression patterns and multiple CRMs with different chromatin configurations to regulate the expression of Otx2 precisely.


Sign in / Sign up

Export Citation Format

Share Document