scholarly journals Osteocytes remodel bone by TGF-β-induced YAP/TAZ signaling

2019 ◽  
Author(s):  
Christopher D. Kegelman ◽  
Jennifer C. Coulombe ◽  
Kelsey M. Jordan ◽  
Daniel J. Horan ◽  
Ling Qin ◽  
...  

ABSTRACTOsteocytes are bone matrix-entombed cells that form an interconnected network of processes called the lacunar/canalicular system, which enables osteocytes to coordinate bone formation and resorption. Osteocytes indirectly regulate osteoblast and osteoclast activity on bone surfaces but also directly resorb and deposit their surrounding bone matrix through perilacunar/canalicular remodeling. However, the molecular mechanisms by which osteocytes control bone remodeling remain unclear. We previously reported that the transcriptional regulators Yes-associated protein (YAP) and Transcriptional co-activator with PDZ-motif (TAZ) promote bone acquisition in osteoblast-lineage cells. Here, we tested the hypothesis that YAP and TAZ regulate osteocyte-mediated bone remodeling by conditional ablation of both YAP and TAZ from mouse osteocytes using 8kb-DMP1-Cre. Osteocyte conditional YAP/TAZ deletion reduced bone mass and dysregulated matrix collagen content and organization, which together impaired bone mechanical properties. YAP/TAZ deletion reduced osteoblast number and activity and increased osteoclast activity. In addition, YAP/TAZ deletion directly impaired osteocyte lacunar/canalicular network remodeling, reducing canalicular density, length, and branching, but did not alter lacunar size or shape. Further, consistent with recent studies identifying TGF-β signaling as a key inducer of perilacunar/canalicular remodeling through expression of matrix-remodeling enzymes, YAP/TAZ deletion in vivo decreased osteocyte expression of matrix proteases Mmp13, Mmp14, and Cathepsin K. In vitro, pharmacologic inhibition of YAP/TAZ transcriptional activity in osteocyte-like cells abrogated TGF-β-induced protease gene expression. Together, these data show that YAP and TAZ act downstream of TGF-β in osteocytes to control bone matrix accrual, organization, and mechanical properties indirectly by coordinating osteoblast/osteoclast activity and directly by regulating perilacunar/canalicular remodeling.

2018 ◽  
Vol 50 (4) ◽  
pp. 1230-1244 ◽  
Author(s):  
Fan Yang ◽  
Ying Qin ◽  
Yueqiu Wang ◽  
Anqi Li ◽  
Jie Lv ◽  
...  

Background/Aims: Diabetic cardiomyopathy (DCM) is a common complication of diabetes and can cause heart failure, arrhythmia and sudden death. The pathogenesis of DCM includes altered metabolism, mitochondrial dysfunction, oxidative stress, inflammation, cell death and extracellular matrix remodeling. Recently, pyroptosis, a type of programmed cell death related to inflammation, was proven to be activated in DCM. However, the molecular mechanisms underlying pyroptosis in DCM remain elusive. The long non-coding RNA (lncRNA) Kcnq1ot1 participates in many cardiovascular diseases. This study aims to clarify whether Kcnq1ot1 affects cardiac pyroptosis in DCM. Methods: AC16 cells and primary cardiomyocytes were incubated with 5.5 and 50 mmol/L glucose. Diabetic mice were induced with streptozotocin (STZ). Kcnq1ot1 was silenced both in vitro and in vivo. qRT-PCR was used to detect the expression level of Kcnq1ot1. Immunofluorescence, qRT-PCR and western blot analyses were used to detect the degree of pyroptosis. Echocardiography, hematoxylin and eosin staining, and Masson’s trichrome staining were used to detect the cardiac function and morphology in mice. Cell death and function were detected using TUNEL staining, immunofluorescence staining and Ca2+ measurements. Results: The expression of Kcnq1ot1 was increased in patients with diabetes, high glucose-induced cardiomyocytes and diabetic mouse cardiac tissue. Silencing Kcnq1ot1 alleviated pyroptosis by targeting miR-214-3p and caspase-1. Furthermore, silencing Kcnq1ot1 reduced cell death, cytoskeletal structure abnormalities and calcium overload in vitro and improved cardiac function and morphology in vivo. Conclusion: Kcnq1ot1 is overexpressed in DCM, and silencing Kcnq1ot1 inhibits pyroptosis by influencing miR-214-3p and caspase-1 expression. We clarified for the first time that Kcnq1ot1 could be a new therapeutic target for DCM.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3520-3520
Author(s):  
Samantha Pozzi ◽  
Teru Hideshima ◽  
Sonia Vallet ◽  
Siddhartha Mukherjee ◽  
Shweta Chhetri ◽  
...  

Abstract Zoledronic acid (ZA) is an amino-bisphosphonate with very potent antiresorptive activity widely used in the treatment of multiple myeloma (MM) bone disease. Recently, the increasing incidence of osteonecrosis of the jaw and its possible association with prolonged use of amino-bisphosphonates such as ZA has been reported. Therefore, we here studied the effects of ZA on bone remodeling in vitro and in vivo. Although ZA has been shown to inhibit osteoclastogenesis and increase bone mineralization, data on its effects on osteoblastic activity and on bone formation are conflicting. To study the effects of ZA on osteoblasts (OB), 5 week old C57BL/6 mice were treated with low and high doses of ZA intraperitoneally (IP) weekly. The dose ranged from 0.05-1mg/kg, with the highest dose recapitulating a lifetime dose of ZA over a 5 year period in an adult MM patient. Blood was collected at baseline and weekly thereafter. IP calcein injections were administered to study bone formation rates. Consistent with its known effects on bone mass and density, in vivo DXA scans in ZA-treated animals demonstrated an increase in whole body bone mineral density (BMD). ZA treatment was associated with a dose-related increase in trabecular bone at the distal femur, evaluated by microCT and confirmed by static histomorphometry. ELISA assays showed a decrease in TRACP5B (bone resorption), as expected due to the anti-osteoclastic activity of ZA. In addition to osteoclast (OC) inhibition, mice treated with ZA also showed alterations in OB activity. Specifically, serum osteocalcin (a marker for bone formation) levels were lower in ZA treated mice, and dynamic histomorphometry confirmed decreased bone formation rates. In order to study the mechanism of our in vivo observations, we tested the effects of ZA on OB, OC, and bone marrow stromal cells (BMSCs) treated in vitro with ZA (0.01μM to 100μM) for 7, 14, and 21 days. Decreased viability during differentiation of both OB and OC was observed, without any significant effects on BMSCs. This was associated with decreased alkaline phosphatase activity, suggesting functional impairment of OB activity. Our data therefore suggests that ZA impairs OB number and activity, in addition to effects on OC and may impair normal physiologic bone remodeling. Ongoing studies will determine the molecular mechanisms whereby ZA mediates these sequelae and inform future studies of ZA use in patients with MM bone disease.


2019 ◽  
Vol 26 (25) ◽  
pp. 4799-4831 ◽  
Author(s):  
Jiahua Cui ◽  
Xiaoyang Liu ◽  
Larry M.C. Chow

P-glycoprotein, also known as ABCB1 in the ABC transporter family, confers the simultaneous resistance of metastatic cancer cells towards various anticancer drugs with different targets and diverse chemical structures. The exploration of safe and specific inhibitors of this pump has always been the pursuit of scientists for the past four decades. Naturally occurring flavonoids as benzopyrone derivatives were recognized as a class of nontoxic inhibitors of P-gp. The recent advent of synthetic flavonoid dimer FD18, as a potent P-gp modulator in reversing multidrug resistance both in vitro and in vivo, specifically targeted the pseudodimeric structure of the drug transporter and represented a new generation of inhibitors with high transporter binding affinity and low toxicity. This review concerned the recent updates on the structure-activity relationships of flavonoids as P-gp inhibitors, the molecular mechanisms of their action and their ability to overcome P-gp-mediated MDR in preclinical studies. It had crucial implications on the discovery of new drug candidates that modulated the efflux of ABC transporters and also provided some clues for the future development in this promising area.


2018 ◽  
Vol 15 (4) ◽  
pp. 345-354 ◽  
Author(s):  
Barbara D'Orio ◽  
Anna Fracassi ◽  
Maria Paola Cerù ◽  
Sandra Moreno

Background: The molecular mechanisms underlying Alzheimer's disease (AD) are yet to be fully elucidated. The so-called “amyloid cascade hypothesis” has long been the prevailing paradigm for causation of disease, and is today being revisited in relation to other pathogenic pathways, such as oxidative stress, neuroinflammation and energy dysmetabolism. The peroxisome proliferator-activated receptors (PPARs) are expressed in the central nervous system (CNS) and regulate many physiological processes, such as energy metabolism, neurotransmission, redox homeostasis, autophagy and cell cycle. Among the three isotypes (α, β/δ, γ), PPARγ role is the most extensively studied, while information on α and β/δ are still scanty. However, recent in vitro and in vivo evidence point to PPARα as a promising therapeutic target in AD. Conclusion: This review provides an update on this topic, focussing on the effects of natural or synthetic agonists in modulating pathogenetic mechanisms at AD onset and during its progression. Ligandactivated PPARα inihibits amyloidogenic pathway, Tau hyperphosphorylation and neuroinflammation. Concomitantly, the receptor elicits an enzymatic antioxidant response to oxidative stress, ameliorates glucose and lipid dysmetabolism, and stimulates autophagy.


2018 ◽  
Vol 18 (2) ◽  
pp. 156-165 ◽  
Author(s):  
Jiaqiang Wang ◽  
Chien-shan Cheng ◽  
Yan Lu ◽  
Xiaowei Ding ◽  
Minmin Zhu ◽  
...  

Background: Propofol, a widely used intravenous anesthetic agent, is traditionally applied for sedation and general anesthesia. Explanation: Recent attention has been drawn to explore the effect and mechanisms of propofol against cancer progression in vitro and in vivo. Specifically, the proliferation-inhibiting and apoptosis-inducing properties of propofol in cancer have been studied. However, the underlying mechanisms remain unclear. Conclusion: This review focused on the findings within the past ten years and aimed to provide a general overview of propofol's malignance-modulating properties and the potential molecular mechanisms.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hiroaki Kanzaki ◽  
Tetsuhiro Chiba ◽  
Junjie Ao ◽  
Keisuke Koroki ◽  
Kengo Kanayama ◽  
...  

AbstractFGF19/FGFR4 autocrine signaling is one of the main targets for multi-kinase inhibitors (MKIs). However, the molecular mechanisms underlying FGF19/FGFR4 signaling in the antitumor effects to MKIs in hepatocellular carcinoma (HCC) remain unclear. In this study, the impact of FGFR4/ERK signaling inhibition on HCC following MKI treatment was analyzed in vitro and in vivo assays. Serum FGF19 in HCC patients treated using MKIs, such as sorafenib (n = 173) and lenvatinib (n = 40), was measured by enzyme-linked immunosorbent assay. Lenvatinib strongly inhibited the phosphorylation of FRS2 and ERK, the downstream signaling molecules of FGFR4, compared with sorafenib and regorafenib. Additional use of a selective FGFR4 inhibitor with sorafenib further suppressed FGFR4/ERK signaling and synergistically inhibited HCC cell growth in culture and xenograft subcutaneous tumors. Although serum FGF19high (n = 68) patients treated using sorafenib exhibited a significantly shorter progression-free survival and overall survival than FGF19low (n = 105) patients, there were no significant differences between FGF19high (n = 21) and FGF19low (n = 19) patients treated using lenvatinib. In conclusion, robust inhibition of FGF19/FGFR4 is of importance for the exertion of antitumor effects of MKIs. Serum FGF19 levels may function as a predictive marker for drug response and survival in HCC patients treated using sorafenib.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Zhenghui Cheng ◽  
Yawen Zhang ◽  
Yinchao Tian ◽  
Yuhan Chen ◽  
Fei Ding ◽  
...  

Abstract Background Schwann cells (SCs) play a crucial role in the repair of peripheral nerves. This is due to their ability to proliferate, migrate, and provide trophic support to axon regrowth. During peripheral nerve injury, SCs de-differentiate and reprogram to gain the ability to repair nerves. Cysteine-rich 61 (Cyr61/CCN1) is a member of the CCN family of matrix cell proteins and have been reported to be abundant in the secretome of repair mediating SCs. In this study we investigate the function of Cyr61 in SCs. Results We observed Cyr61 was expressed both in vivo and in vitro. The promoting effect of Cyr61 on SC proliferation and migration was through autocrine and paracrine mechanisms. SCs expressed αvβ3 integrin and the effect of Cyr61 on SC proliferation and migration could be blocked via αvβ3 integrin. Cyr61 could influence c-Jun protein expression in cultured SCs. Conclusions In this study, we found that Cyr61 promotes SC proliferation and migration via αvβ3 integrin and regulates c-Jun expression. Our study contributes to the understanding of cellular and molecular mechanisms underlying SC’s function during nerve injury, and thus, may facilitate the regeneration of peripheral nerves after injury.


2021 ◽  
Vol 12 (7) ◽  
Author(s):  
Yu Tian ◽  
Bo Tang ◽  
Chengye Wang ◽  
Yan Wang ◽  
Jiakai Mao ◽  
...  

AbstractOncogenic ubiquitin-specific protease 22 (USP22) is implicated in a variety of tumours; however, evidence of its role and underlying molecular mechanisms in cholangiocarcinoma (CCA) development remains unknown. We collected paired tumour and adjacent non-tumour tissues from 57 intrahepatic CCA (iCCA) patients and evaluated levels of the USP22 gene and protein by qPCR and immunohistochemistry. Both the mRNA and protein were significantly upregulated, correlated with the malignant invasion and worse OS of iCCA. In cell cultures, USP22 overexpression increased CCA cell proliferation and mobility, and induced epithelial-to-mesenchymal transition (EMT). Upon an interaction, USP22 deubiquitinated and stabilized sirtuin-1 (SIRT1), in conjunction with Akt/ERK activation. In implantation xenografts, USP22 overexpression stimulated tumour growth and metastasis to the lungs of mice. Conversely, the knockdown by USP22 shRNA attenuated the tumour growth and invasiveness in vitro and in vivo. Furthermore, SIRT1 overexpression reversed the USP22 functional deficiency, while the knockdown acetylated TGF-β-activated kinase 1 (TAK1) and Akt. Our present study defines USP22 as a poor prognostic predictor in iCCA that cooperates with SIRT1 and facilitates tumour development.


2021 ◽  
Vol 22 (3) ◽  
pp. 1169
Author(s):  
Yuhan Chang ◽  
Chih-Chien Hu ◽  
Ying-Yu Wu ◽  
Steve W. N. Ueng ◽  
Chih-Hsiang Chang ◽  
...  

Bacterial infection in orthopedic surgery is challenging because cell wall components released after bactericidal treatment can alter osteoblast and osteoclast activity and impair fracture stability. However, the precise effects and mechanisms whereby cell wall components impair bone healing are unclear. In this study, we characterized the effects of lipopolysaccharide (LPS) on bone healing and osteoclast and osteoblast activity in vitro and in vivo and evaluated the effects of ibudilast, an antagonist of toll-like receptor 4 (TLR4), on LPS-induced changes. In particular, micro-computed tomography was used to reconstruct femoral morphology and analyze callus bone content in a femoral defect mouse model. In the sham-treated group, significant bone bridge and cancellous bone formation were observed after surgery, however, LPS treatment delayed bone bridge and cancellous bone formation. LPS inhibited osteogenic factor-induced MC3T3-E1 cell differentiation, alkaline phosphatase (ALP) levels, calcium deposition, and osteopontin secretion and increased the activity of osteoclast-associated molecules, including cathepsin K and tartrate-resistant acid phosphatase in vitro. Finally, ibudilast blocked the LPS-induced inhibition of osteoblast activation and activation of osteoclast in vitro and attenuated LPS-induced delayed callus bone formation in vivo. Our results provide a basis for the development of a novel strategy for the treatment of bone infection.


Sign in / Sign up

Export Citation Format

Share Document