scholarly journals Plant-microbe co-evolution: allicin resistance in a Pseudomonas fluorescens strain (PfAR-1) isolated from garlic

2019 ◽  
Author(s):  
Jan Borlinghaus ◽  
Anthony Bolger ◽  
Christina Schier ◽  
Alexander Vogel ◽  
Martin C. H. Gruhlke ◽  
...  

The antibiotic defense substance allicin (diallylthiosulfinate) is produced by garlic (Allium sativum L.) after tissue damage, giving garlic its characteristic odor. Allicin is a redox-toxin that oxidizes thiols in glutathione and cellular proteins. A highly allicin-resistant Pseudomonas fluorescens strain (PfAR-1) was isolated from garlic, and genomic clones were shotgun electroporated into an allicin-susceptible P. syringae strain (Ps4612). Recipients showing allicin-resistance had all inherited a group of genes from one of three similar genomic islands (GI), that had been identified in an in silico analysis of the PfAR-1 genome. A core fragment of 8-10 congruent genes with redox-related functions, present in each GI, was shown to confer allicin-specific resistance to P. syringae, and even to an unrelated E. coli strain. Transposon mutagenesis and overexpression analyses revealed the contribution of individual candidate genes to allicin-resistance. Moreover, PfAR-1 was unusual in having 3 glutathione reductase (glr) genes, two copies in two of the GIs, but outside of the core group, and one copy in the PfAR-1 genome. Glr activity was approximately 2-fold higher in PfAR-1 than in related susceptible Pf0-1, with only a single glr gene. Moreover, an E. coli Δglr mutant showed increased susceptibility to allicin, which was complemented by PfAR-1 glr1. Taken together, our data support a multi-component resistance mechanism against allicin, achieved through horizontal gene transfer during coevolution, and allowing exploitation of the garlic ecological niche. GI regions syntenic with PfAR-1 GIs are present in other plant-associated bacterial species, perhaps suggesting a wider role in adaptation to plants per se.

2020 ◽  
Vol 3 (5) ◽  
pp. e202000670 ◽  
Author(s):  
Jan Borlinghaus ◽  
Anthony Bolger ◽  
Christina Schier ◽  
Alexander Vogel ◽  
Björn Usadel ◽  
...  

The common foodstuff garlic produces the potent antibiotic defense substance allicin after tissue damage. Allicin is a redox toxin that oxidizes glutathione and cellular proteins and makes garlic a highly hostile environment for non-adapted microbes. Genomic clones from a highly allicin-resistant Pseudomonas fluorescens (PfAR-1), which was isolated from garlic, conferred allicin resistance to Pseudomonas syringae and even to Escherichia coli. Resistance-conferring genes had redox-related functions and were on core fragments from three similar genomic islands identified by sequencing and in silico analysis. Transposon mutagenesis and overexpression analyses revealed the contribution of individual candidate genes to allicin resistance. Taken together, our data define a multicomponent resistance mechanism against allicin in PfAR-1, achieved through horizontal gene transfer.


2020 ◽  
Vol 9 (1) ◽  
pp. 28
Author(s):  
R Abyseka Prayogo ◽  
Dorta Simamora

Escherichia coli bacteria is the most common cause of gastroenteritis (diarrhea), urinary tract infections (UTI), food poisoning, and other clinical problems such as neonatal miningitis. Garlic (Allium sativum) and Noni fruit (Morinda citrifolia) are plants that have antimicrobial properties, which can be used against bacteria such as E. Coli. This study was conducted to determine the inhibition zone combination of garlic extract (Allium sativum) and Noni fruit (Morinda citrifolia) against gram negative bacteria E. Coli. The research was conducted at the Laboratory of Microbiology at the Faculty of Medicine, University of Wijaya Kusuma Surabaya, and has been ethically feasible. This study was divided into 4 groups with replications 6 times each; group P0 (sterile distilled water), P1 (50% garlic + 25% noni fruit), P2 (50% garlic + 50% noni fruit), P3 (50% garlic + 75% noni fruit). Data were analyzed using One-way ANOVA test. The analysis results showed that the average diameter of the inhibition zone formed was the largest in group P1 (10.7 mm) and the smallest in group P0 (0 mm), while in P2 (9.89 mm), and P3 (9.77 mm). Based on the analysis test, the higher the concentration of noni fruit given to the extract combination resulted in the smaller diameter of the inhibition zone. This occurs due to the combination of garlic and Noni fruit has an antagonistic effect that depend on bacterial species, temperature, pH, chemical structure, chemical reactions, and concentrations or doses of antimicrobial compounds. The results also showed that there was no significant difference between group P1 and group P2, group P1 with group P3 and group P2 with group P3 showing p-value> 0.005.


2011 ◽  
Vol 286 (41) ◽  
pp. 35562-35570 ◽  
Author(s):  
Damien Dubois ◽  
Olivier Baron ◽  
Antony Cougnoux ◽  
Julien Delmas ◽  
Nathalie Pradel ◽  
...  

The pks genomic island of Escherichia coli encodes polyketide (PK) and nonribosomal peptide (NRP) synthases that allow assembly of a putative hybrid PK-NRP compound named colibactin that induces DNA double-strand breaks in eukaryotic cells. The pks-encoded machinery harbors an atypical essential protein, ClbP. ClbP crystal structure and mutagenesis experiments revealed a serine-active site and original structural features compatible with peptidase activity, which was detected by biochemical assays. Ten ClbP homologs were identified in silico in NRP genomic islands of closely and distantly related bacterial species. All tested ClbP homologs were able to complement a clbP-deficient E. coli mutant. ClbP is therefore a prototype of a new subfamily of extracytoplasmic peptidases probably involved in the maturation of NRP compounds. Such peptidases will be powerful tools for the manipulation of NRP biosynthetic pathways.


2000 ◽  
Vol 182 (17) ◽  
pp. 4789-4796 ◽  
Author(s):  
Kristian Kjærgaard ◽  
Mark A. Schembri ◽  
Henrik Hasman ◽  
Per Klemm

ABSTRACT Antigen 43 (Ag43) is a surface-displayed autotransporter protein ofEscherichia coli. By virtue of its self-association characteristics, this protein is able to mediate autoaggregation and flocculation of E. coli cells in static cultures. Additionally, surface display of Ag43 is associated with a distinct frizzy colony morphology in E. coli. Here we show that Ag43 can be expressed in a functional form on the surface of the environmentally important Pseudomonas fluorescens strain SBW25 with ensuing cell aggregation and frizzy colony types. Using green fluorescence protein-tagged cells, we demonstrate that Ag43 can be used as a tool to provide interspecies cell aggregation betweenE. coli and P. fluorescens. Furthermore, Ag43 expression enhances biofilm formation in P. fluorescens to glass surfaces. The versatility of this protein was also reflected in Ag43 surface display in a variety of other gram-negative bacteria. Display of heterologous Ag43 in selected bacteria might offer opportunities for rational design of multispecies consortia where the concerted action of several bacterial species is required, e.g., waste treatment and degradation of pollutants.


Author(s):  
Zaid Raad Abbas ◽  
Aqeel Mohammed Majeed Al-Ezee ◽  
Sawsan H

This study was conducted to explore the ability of Pseudomonas fluorescens and Bacillus cereus to solubilizing a phosphate in soil for enhancing the planting growth and, its relation with soill characterization. The isolates were identified as P.fluorescens and B. cereus using convential analysis and, its phosphate solubilization ability and sidrophore was shown by the clear zone formation on National Botanical Research Institute���s Phosphate medium. Moreover, Pseudomonas fluorescens isolates (n = 9) and three of B. cereus isolated from agricultural area in Baghdad university, Mustansiriyah university and Diyala bridge. Results displayed that bacterial count were varied in soil samples according to their region, and ranging from 30 to 60 *10 2 CFU/g in Baghdad university soil to 10���20 *10 2 CFU/g in Mustansiriyah university soil, the Baghdad soil macronutrient which included: NH4, NO3, P, and K were, 8.42, 20.53, 19.09, 218.73 respectively, While the physio analysis revealed that the mean of pH was 7.3 and EC was 8.63. on the other hand the micronutrient analysis indicated that the soil samples were included Ca, Fe, Mn, Zn and Cu which gave their mean 5025.9, 8.9, 4.9, 0.5 and 1.5 respectevily. Results revealed that all isolated bacteria (9 isolates of P.fluorescens and three isolates of B. cereus gave ahalo zone which mean their ability to be phosphate solubilizing bacteria at 100%. Results revealed that all isolated bacteria were detected a ability to produce high levels from chelating agents (siderophores)) by P.fluorescens and. B cereus at 100%, when appeared ahalo clear zone. Furthermore, the high levels of phosphate solubilization and siderophore production were grouped in bacterial species isolated from Iraqi soils. might be attributed to many soil factors such as soil nutrient status, soil acidity, water content, organic matter and soil enzyme activities.


Author(s):  
K.K. Gupta ◽  
Neha Kumari ◽  
Neha Sinha ◽  
Akruti Gupta

Biogenic synthesis of silver nanoparticles synthesized from Hymenocallis species (Spider Lilly) leaf extract was subjected for investigation of its antimicrobial property against four bacterial species (E. coli, Salmonella sp., Streptococcus sp. & Staphylococcus sp.). The results revealed that synthesized nanoparticles solution very much justify the color change property from initial light yellow to final reddish brown during the synthesis producing a characteristics absorption peak in the range of 434-466 nm. As antimicrobial agents, their efficacy was evaluated by analysis of variance in between the species and among the different concentration of AgNPs solution, which clearly showed that there was significant variation in the antibiotic property between the four different concentrations of AgNPs solution and also among four different species of bacteria taken under studies. However, silver nanoparticles solution of 1: 9 and 1:4 were proved comparatively more efficient as antimicrobial agents against four species of bacteria.


2020 ◽  
Vol 20 (29) ◽  
pp. 2681-2691
Author(s):  
Athina Geronikaki ◽  
Victor Kartsev ◽  
Phaedra Eleftheriou ◽  
Anthi Petrou ◽  
Jasmina Glamočlija ◽  
...  

Background: Although a great number of the targets of antimicrobial therapy have been achieved, it remains among the first fields of pharmaceutical research, mainly because of the development of resistant strains. Docking analysis may be an important tool in the research for the development of more effective agents against specific drug targets or multi-target agents 1-3. Methods: In the present study, based on docking analysis, ten tetrahydrothiazolo[2,3-a]isoindole derivatives were chosen for the evaluation of the antimicrobial activity. Results: All compounds showed antibacterial activity against eight Gram-positive and Gram-negative bacterial species being, in some cases, more potent than ampicillin and streptomycin against all species. The most sensitive bacteria appeared to be S. aureus and En. Cloacae, while M. flavus, E. coli and P. aeruginosa were the most resistant ones. The compounds were also tested for their antifungal activity against eight fungal species. All compounds exhibited good antifungal activity better than reference drugs bifonazole (1.4 – 41 folds) and ketoconazole (1.1 – 406 folds) against all fungal species. In order to elucidate the mechanism of action, docking studies on different antimicrobial targets were performed. Conclusion: According to docking analysis, the antifungal activity can be explained by the inhibition of the CYP51 enzyme for most compounds with a better correlation of the results obtained for the P.v.c. strain (linear regression between estimated binding Energy and log(1/MIC) with R 2 =0.867 and p=0.000091 or R 2 = 0.924, p= 0.000036, when compound 3 is excluded.


Author(s):  
Angélique Buton ◽  
Louis-Marie Bobay

Abstract Homologous recombination is a key pathway found in nearly all bacterial taxa. The recombination complex allows bacteria to repair DNA double strand breaks but also promotes adaption through the exchange of DNA between cells. In Proteobacteria, this process is mediated by the RecBCD complex, which relies on the recognition of a DNA motif named Chi to initiate recombination. The Chi motif has been characterized in Escherichia coli and analogous sequences have been found in several other species from diverse families, suggesting that this mode of action is widespread across bacteria. However, the sequences of Chi-like motifs are known for only five bacterial species: E. coli, Haemophilus influenzae, Bacillus subtilis, Lactococcus lactis and Staphylococcus aureus. In this study we detected putative Chi motifs in a large dataset of Proteobacteria and we identified four additional motifs sharing high sequence similarity and similar properties to the Chi motif of E. coli in 85 species of Proteobacteria. Most Chi motifs were detected in Enterobacteriaceae and this motif appears well conserved in this family. However, we did not detect Chi motifs for the majority of Proteobacteria, suggesting that different motifs are used in these species. Altogether these results substantially expand our knowledge on the evolution of Chi motifs and on the recombination process in bacteria.


2021 ◽  
Vol 9 (2) ◽  
pp. 388
Author(s):  
Marta Hernández-García ◽  
María García-Castillo ◽  
Sergio García-Fernández ◽  
Diego López-Mendoza ◽  
Jazmín Díaz-Regañón ◽  
...  

CrpP enzymes have been recently described as a novel ciprofloxacin-resistance mechanism. We investigated by whole genome sequencing the presence of crpP-genes and other mechanisms involved in quinolone resistance in MDR/XDR-Pseudomonas aeruginosa isolates (n = 55) with both ceftolozane-tazobactam susceptible or resistant profiles recovered from intensive care unit patients during the STEP (Portugal) and SUPERIOR (Spain) surveillance studies. Ciprofloxacin resistance was associated with mutations in the gyrA and parC genes. Additionally, plasmid-mediated genes (qnrS2 and aac(6′)-Ib-cr) were eventually detected. Ten chromosomal crpP-like genes contained in related pathogenicity genomic islands and 6 different CrpP (CrpP1-CrpP6) proteins were found in 65% (36/55) of the isolates. Dissemination of CrpP variants was observed among non-related clones of both countries, including the CC175 (Spain) high-risk clone and CC348 (Portugal) clone. Interestingly, 5 of 6 variants (CrpP1-CrpP5) carried missense mutations in an amino acid position (Gly7) previously defined as essential conferring ciprofloxacin resistance, and decreased ciprofloxacin susceptibility was only associated with the novel CrpP6 protein. In our collection, ciprofloxacin resistance was mainly due to chromosomal mutations in the gyrA and parC genes. However, crpP genes carrying mutations essential for protein function (G7, I26) and associated with a restored ciprofloxacin susceptibility were predominant. Despite the presence of crpP genes is not always associated with ciprofloxacin resistance, the risk of emergence of novel CrpP variants with a higher ability to affect quinolones is increasing. Furthermore, the spread of crpP genes in highly mobilizable genomic islands among related and non-related P. aeruginosa clones alert the dispersion of MDR pathogens in hospital settings.


Pathogens ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 384
Author(s):  
Tessa de Block ◽  
Jolein Gyonne Elise Laumen ◽  
Christophe Van Dijck ◽  
Said Abdellati ◽  
Irith De Baetselier ◽  
...  

In this study, we characterized all oropharyngeal and anorectal isolates of Neisseria spp. in a cohort of men who have sex with men. This resulted in a panel of pathogenic Neisseria (N. gonorrhoeae [n = 5] and N. meningitidis [n = 5]) and nonpathogenic Neisseria (N. subflava [n = 11], N. mucosa [n = 3] and N. oralis [n = 2]). A high proportion of strains in this panel were resistant to azithromycin (18/26) and ceftriaxone (3/26). Whole genome sequencing (WGS) of these strains identified numerous mutations that are known to confer reduced susceptibility to azithromycin and ceftriaxone in N. gonorrhoeae. The presence or absence of these known mutations did not explain the high level resistance to azithromycin (>256 mg/L) in the nonpathogenic isolates (8/16). After screening for antimicrobial resistance (AMR) genes, we found a ribosomal protection protein, Msr(D), in these highly azithromycin resistant nonpathogenic strains. The complete integration site originated from Streptococcus pneumoniae and is associated with high level resistance to azithromycin in many other bacterial species. This novel AMR resistance mechanism to azithromycin in nonpathogenic Neisseria could be a public health concern if it were to be transmitted to pathogenic Neisseria. This study demonstrates the utility of WGS-based surveillance of nonpathogenic Neisseria.


Sign in / Sign up

Export Citation Format

Share Document