scholarly journals Deglycosylation of isoflavone C–glucoside puerarin by combination of two recombinant bacterial enzymes and 3–oxo–glucose

2019 ◽  
Author(s):  
Kenichi Nakamura ◽  
Shu Zhu ◽  
Katsuko Komatsu ◽  
Masao Hattori ◽  
Makoto Iwashima

AbstractC–Glucosides are resistant to glycoside hydrolase activity because the anomeric carbon of glucose is directly connected to aglycone via carbon-carbon bonding. A human intestinal bacterium strain PUE related to Dorea species can metabolize the isoflavone C–glucoside puerarin (daidzein 8–C–glucoside) to daidzein and glucose by more than three bacterial enzymes which have not been well-characterized. We previously reported that 3”–oxo–puerarin is an essential reaction intermediate in enzymatic puerarin degradation and characterized a bacterial enzyme of DgpB–C complex which cleaved the C–glycosidic bond in 3”–oxo–puerarin. However, the exact enzyme catalyzing the oxidation of C–3” hydroxyl in puerarin has not been identified, and the other metabolite corresponding to the precursor of D–glucose, derived from the sugar moiety in 3”–oxo–puerarin in the cleaving reaction catalyzed by the DgpB–C complex, remains unknown.In this study, we demonstrated that recombinant DgpA, a Gfo/Idh/MocA family oxidoreductase, catalyzed puerarin oxidation in the presence of 3–oxo–glucose as the hydride accepter. In addition, enzymatic C–deglycosylation of puerarin was achieved by a combination of recombinant DgpA, DgpB–C complex, and 3–oxo–glucose. Furthermore, the metabolite derived from the sugar moiety in 3”–oxo–puerarin cleaving reaction catalyzed by DgpB–C complex was characterized as 1,5–anhydro–D–erythro –hex–1–en–3–ulose, suggesting that the C–glycosidic linkage is cleaved through a β–elimination like mechanism.ImportanceOne important role of the gut microbiota is to metabolize dietary nutrients and supplements such as flavonoid glycosides. Ingested glycosides are metabolized by intestinal bacteria to more absorbable aglycones and further degradation products which show beneficial effects in humans. Although numerous glycoside hydrolases that catalyze O–deglycosylation have been reported, enzymes responsible for C–deglycosylation are still limited. In this study, we characterized enzymes involved in C–deglycosylation of puerarin from a human intestinal bacterium PUE. To our knowledge, this is the first report of the expression, purification and characterization of an oxidoreductase involved in C–glucoside degradation. This study provides new insights for the elucidation of mechanisms of enzymatic C–deglycosylation.

2020 ◽  
Vol 86 (14) ◽  
Author(s):  
Kenichi Nakamura ◽  
Shu Zhu ◽  
Katsuko Komatsu ◽  
Masao Hattori ◽  
Makoto Iwashima

ABSTRACT A human intestinal bacterium strain related to Dorea species, PUE, can metabolize the isoflavone C-glucoside puerarin (daidzein 8-C-glucoside) to daidzein and glucose. We reported previously that 3″-oxo-puerarin is an essential reaction intermediate in enzymatic puerarin degradation, and we characterized a bacterial enzyme, the DgpB-DgpC complex, that cleaved the C-glycosidic bond in 3″-oxo-puerarin. However, the exact enzyme catalyzing the oxidation of the C-3″ hydroxyl in puerarin has not been identified. In this study, we demonstrated that recombinant DgpA, a Gfo/Idh/MocA family oxidoreductase, catalyzed puerarin oxidation in the presence of 3-oxo-glucose as the hydride acceptor. In the redox reaction, NAD(H) functioned as the cofactor, which bound tightly but noncovalently to DgpA. Kinetics analysis of DgpA revealed that the reaction proceeded via a ping-pong mechanism. Enzymatic C-deglycosylation of puerarin was achieved by a combination of recombinant DgpA, the DgpB-DgpC complex, and 3-oxo-glucose. In addition, the metabolite derived from the sugar moiety in the 3″-oxo-puerarin-cleaving reaction catalyzed by the DgpB-DgpC complex was characterized as 1,5-anhydro-d-erythro-hex-1-en-3-ulose, suggesting that the C-glycosidic linkage is cleaved through a β-elimination-like mechanism. IMPORTANCE One important role of the gut microbiota is to metabolize dietary nutrients and supplements such as flavonoid glycosides. Ingested glycosides are metabolized by intestinal bacteria to more-absorbable aglycones and further degradation products that show beneficial effects in humans. Although numerous glycoside hydrolases that catalyze O-deglycosylation have been reported, enzymes responsible for C-deglycosylation are still limited. In this study, we characterized enzymes involved in the C-deglycosylation of puerarin from a human intestinal bacterium, PUE. Here, we report the purification and characterization of a recombinant oxidoreductase involved in C-glucoside degradation. This study provides new insights for the elucidation of mechanisms of enzymatic C-deglycosylation.


Nutrients ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 1143
Author(s):  
Haiyan Xu ◽  
Keizo Hiraishi ◽  
Lin-Hai Kurahara ◽  
Yuko Nakano-Narusawa ◽  
Xiaodong Li ◽  
...  

Chronic inflammation is a risk factor for colorectal cancer, and inflammatory cytokines secreted from inflammatory cells and active oxygen facilitate tumorigenesis. Intestinal bacteria are thought to regulate tumorigenesis. The longer the breastfeeding period, the lower is the risk of inflammatory bowel disease. Here, we investigated preventive effects of the probiotic Lactobacillus rhamnosus M9 (Probio-M9) on colitis-associated tumorigenesis. An inflammatory colorectal tumor model was established using a 6-week-old male C57BL/6NCrSlc mouse, which was intraperitoneally administered with azoxymethane (AOM: 12 mg/kg body weight). On weeks 2 and 4, 2% dextran sulfate sodium (DSS) was administered to mice for 7 days through drinking water. On weeks 8 and 10, Probio-M9 (2 × 109/day) was orally administered for 7 days. Animals were sacrificed at 20 weeks after AOM administration and immunohistochemical staining and Western blotting was performed. The α-diversity of microflora (Shannon index), principal coordinate analysis, and distribution of intestinal bacterium genera and metabolic pathways were compared. The AOM/DSS group showed weight loss, diarrhea, intestinal shortening, increased number of colon tumors, proliferating tumorigenesis, increased inflammation score, fibrosis, increased CD68+, or CD163+ macrophage cells in the subserosal layer of non-tumor areas. Inflammation and tumorigenesis ameliorated after Probio-M9 treatment. Fecal microbial functions were altered by AOM/DSS treatment. Probio-M9 significantly upregulated the fecal microbial diversity and reversed fecal microbial functions. Thus, Probio-M9 could suppress tumor formation in the large intestine by regulating the intestinal environment and ameliorating inflammation, suggesting its therapeutic potential for treatment of inflammation and colitis-associated tumorigenesis.


2015 ◽  
Vol 81 (17) ◽  
pp. 5880-5888 ◽  
Author(s):  
C. De Maesschalck ◽  
V. Eeckhaut ◽  
L. Maertens ◽  
L. De Lange ◽  
L. Marchal ◽  
...  

ABSTRACTIn broiler chickens, feed additives, including prebiotics, are widely used to improve gut health and to stimulate performance. Xylo-oligosaccharides (XOS) are hydrolytic degradation products of arabinoxylans that can be fermented by the gut microbiota. In the current study, we aimed to analyze the prebiotic properties of XOS when added to the broiler diet. Administration of XOS to chickens, in addition to a wheat-rye-based diet, significantly improved the feed conversion ratio. XOS significantly increased villus length in the ileum. It also significantly increased numbers of lactobacilli in the colon andClostridiumcluster XIVa in the ceca. Moreover, the number of gene copies encoding the key bacterial enzyme for butyrate production, butyryl-coenzyme A (butyryl-CoA):acetate CoA transferase, was significantly increased in the ceca of chickens administered XOS. In this group of chickens, at the species level,Lactobacillus crispatusandAnaerostipes butyraticuswere significantly increased in abundance in the colon and cecum, respectively.In vitrofermentation of XOS revealed cross-feeding betweenL. crispatusandA. butyraticus. Lactate, produced byL. crispatusduring XOS fermentation, was utilized by the butyrate-producingAnaerostipesspecies. These data show the beneficial effects of XOS on broiler performance when added to the feed, which potentially can be explained by stimulation of butyrate-producing bacteria through cross-feeding of lactate and subsequent effects of butyrate on gastrointestinal function.


2016 ◽  
Vol 311 (3) ◽  
pp. E620-E627 ◽  
Author(s):  
Tianru Jin ◽  
Jianping Weng

GLP-1 and its based drugs possess extrapancreatic metabolic functions, including that in the liver. These direct hepatic metabolic functions explain their therapeutic efficiency for subjects with insulin resistance. The direct hepatic functions could be mediated by previously assumed “degradation” products of GLP-1 without involving canonic GLP-1R. Although GLP-1 analogs were created as therapeutic incretins, extrapancreatic functions of these drugs, as well as native GLP-1, have been broadly recognized. Among them, the hepatic functions are particularly important. Postprandial GLP-1 release contributes to insulin secretion, which represses hepatic glucose production. This indirect effect of GLP-1 is known as the gut-pancreas-liver axis. Great efforts have been made to determine whether GLP-1 and its analogs possess direct metabolic effects on the liver, as the determination of the existence of direct hepatic effects may advance the therapeutic theory and clinical practice on subjects with insulin resistance. Furthermore, recent investigations on the metabolic beneficial effects of previously assumed “degradation” products of GLP-1 in the liver and elsewhere, including GLP-128–36 and GLP-132–36, have drawn intensive attention. Such investigations may further improve the development and the usage of GLP-1-based drugs. Here, we have reviewed the current advancement and the existing controversies on the exploration of direct hepatic functions of GLP-1 and presented our perspectives that the direct hepatic metabolic effects of GLP-1 could be a GLP-1 receptor-independent event involving Wnt signaling pathway activation.


2003 ◽  
Vol 73 (2) ◽  
pp. 120-126 ◽  
Author(s):  
Cassidy

Interest in the physiological role of bioactive compounds present in plants has increased dramatically over the last decade. Of particular interest in relation to human health are the class of compounds known as the phytoestrogens, which embody several groups of non-steroidal oestrogens including isoflavones & lignans that are widely distributed within the plant kingdom. Data from animal and in vitro studies provide plausible mechanisms to explain how phytoestrogens may influence hormone dependent states, but although the clinical application of diets rich in these oestrogen mimics is in its infancy, data from preliminary studies suggest potential beneficial effects of importance to health. Phytoestrogens are strikingly similar in chemical structure to the mammalian oestrogen, oestradiol, and bind to oestrogen receptors (ER) with a preference for the more recently described ERb. This suggests that these compounds may exert tissue specific effects. Numerous other biological effects independent of the ER (e.g. antioxidant capacity, antiproliferative and antiangiogenic effects) have been ascribed to these compounds. Whether phytoestrogens have any biological activity in humans, either hormonal or non hormonal is a contentious issue and there is currently a paucity of data on human exposure. Much of the available data on the absorption and metabolism of dietary phytoestrogens is of a qualitative nature; it is known that dietary phytoestrogens are metabolised by intestinal bacteria, absorbed, conjugated in the liver, circulated in plasma and excreted in urine. Recent studies have addressed quantitatively what happens to isoflavones following ingestion – with pure compound and stable isotope data to compliment recent pharmacokinetic data for soy foods. The limited studies conducted so far in humans clearly confirm that soya isoflavones can exert hormonal effects. These effects may be of benefit in the prevention of many of the common diseases observed in Western populations (such as breast cancer, prostate cancer, menopausal symptoms, osteoporosis) where the diet is typically devoid of these biologically active naturally occurring compounds. However since biological effects are dependent on many factors including dose, duration of use, protein binding affinity, individual metabolism and intrinsic oestrogenic state, further clinical studies are necessary to determine the potential health effects of these compounds in specific population groups. However we currently know little about age related differences in exposure to these compounds and there are few guidelines on optimal dose for specific health outcomes.


2020 ◽  
Vol 8 (4) ◽  
pp. 481 ◽  
Author(s):  
Toshihiko Katoh ◽  
Miriam N. Ojima ◽  
Mikiyasu Sakanaka ◽  
Hisashi Ashida ◽  
Aina Gotoh ◽  
...  

Certain species of the genus Bifidobacterium represent human symbionts. Many studies have shown that the establishment of symbiosis with such bifidobacterial species confers various beneficial effects on human health. Among the more than ten (sub)species of human gut-associated Bifidobacterium that have significantly varied genetic characteristics at the species level, Bifidobacterium bifidum is unique in that it is found in the intestines of a wide age group, ranging from infants to adults. This species is likely to have adapted to efficiently degrade host-derived carbohydrate chains, such as human milk oligosaccharides (HMOs) and mucin O-glycans, which enabled the longitudinal colonization of intestines. The ability of this species to assimilate various host glycans can be attributed to the possession of an adequate set of extracellular glycoside hydrolases (GHs). Importantly, the polypeptides of those glycosidases frequently contain carbohydrate-binding modules (CBMs) with deduced affinities to the target glycans, which is also a distinct characteristic of this species among members of human gut-associated bifidobacteria. This review firstly describes the prevalence and distribution of B. bifidum in the human gut and then explains the enzymatic machinery that B. bifidum has developed for host glycan degradation by referring to the functions of GHs and CBMs. Finally, we show the data of co-culture experiments using host-derived glycans as carbon sources, which underpin the interesting altruistic behavior of this species as a cross-feeder.


Nutrients ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1464 ◽  
Author(s):  
Yala Stevens ◽  
Evelien Van Rymenant ◽  
Charlotte Grootaert ◽  
John Van Camp ◽  
Sam Possemiers ◽  
...  

Citrus flavanones, with hesperidin and naringin as the most abundant representatives, have various beneficial effects, including anti-oxidative and anti-inflammatory activities. Evidence also indicates that they may impact the intestinal microbiome and are metabolized by the microbiota as well, thereby affecting their bioavailability. In this review, we provide an overview on the current evidence on the intestinal fate of hesperidin and naringin, their interaction with the gut microbiota, and their effects on intestinal barrier function and intestinal inflammation. These topics will be discussed as they may contribute to gastrointestinal health in various diseases. Evidence shows that hesperidin and naringin are metabolized by intestinal bacteria, mainly in the (proximal) colon, resulting in the formation of their aglycones hesperetin and naringenin and various smaller phenolics. Studies have also shown that citrus flavanones and their metabolites are able to influence the microbiota composition and activity and exert beneficial effects on intestinal barrier function and gastrointestinal inflammation. Although the exact underlying mechanisms of action are not completely clear and more research in human subjects is needed, evidence so far suggests that citrus flavanones as well as their metabolites have the potential to contribute to improved gastrointestinal function and health.


Nutrients ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1613 ◽  
Author(s):  
Ronald Hills ◽  
Benjamin Pontefract ◽  
Hillary Mishcon ◽  
Cody Black ◽  
Steven Sutton ◽  
...  

The gut microbiome plays an important role in human health and influences the development of chronic diseases ranging from metabolic disease to gastrointestinal disorders and colorectal cancer. Of increasing prevalence in Western societies, these conditions carry a high burden of care. Dietary patterns and environmental factors have a profound effect on shaping gut microbiota in real time. Diverse populations of intestinal bacteria mediate their beneficial effects through the fermentation of dietary fiber to produce short-chain fatty acids, endogenous signals with important roles in lipid homeostasis and reducing inflammation. Recent progress shows that an individual’s starting microbial profile is a key determinant in predicting their response to intervention with live probiotics. The gut microbiota is complex and challenging to characterize. Enterotypes have been proposed using metrics such as alpha species diversity, the ratio of Firmicutes to Bacteroidetes phyla, and the relative abundance of beneficial genera (e.g., Bifidobacterium, Akkermansia) versus facultative anaerobes (E. coli), pro-inflammatory Ruminococcus, or nonbacterial microbes. Microbiota composition and relative populations of bacterial species are linked to physiologic health along different axes. We review the role of diet quality, carbohydrate intake, fermentable FODMAPs, and prebiotic fiber in maintaining healthy gut flora. The implications are discussed for various conditions including obesity, diabetes, irritable bowel syndrome, inflammatory bowel disease, depression, and cardiovascular disease.


2012 ◽  
Vol 32 (1) ◽  
pp. 45-54 ◽  
Author(s):  
Caatje Y. le Poole ◽  
Frans J. van Ittersum ◽  
Rob M. Valentijn ◽  
Tom Teerlink ◽  
Bengt Lindholm ◽  
...  

BackgroundStandard peritoneal dialysis (PD) solutions contain high levels of glucose and glucose degradation products (GDPs), both contributing to the formation of advanced glycation end products (AGEs). We studied the contribution to plasma GDP and AGE levels of 2 PD regimens that differ in glucose and GDP loads: high load [standard PD (sPD) using 4 glucose-lactate exchanges] and low load [1 amino acid exchange, 1 icodextrin exchange, and 2 glucose-bicarbonate/lactate exchanges (“NEPP”)].MethodsIn a prospective crossover study (2 periods of 24 weeks), new continuous ambulatory PD patients were randomized to NEPP-sPD ( n = 23) or to sPD-NEPP ( n = 27).ResultsAfter the start of PD, absolute increases were observed in plasma levels of 3-deoxyglucosone (3-DG, 220.4 nmol/L, p < 0.0001) and in Nε-(carboxymethyl) lysine (CML) in plasma proteins (0.02 μmol/L CML per 1 mol/L lysine, p < 0.0001). During the first 6 weeks, 3-DG tended to increase more with sPD treatment (p = 0.08), and CML, with NEPP treatment (p = 0.002). In both groups, Nε-(carboxyethyl)lysine (CEL) in plasma proteins declined significantly with the start of PD. Treatment with NEPP resulted in higher levels of methylglyoxal (MGO) and lower levels of 3-DG and CEL. Pentosidine in the albumin fraction tended to increase less during NEPP treatment.ConclusionsA low glucose and GDP PD regimen (NEPP) resulted in plasma levels of 3-DG and CEL that were lower than those with a glucose-based sPD regimen. Starting PD with NEPP was associated with a steeper increase in CML, and continuing treatment with NEPP resulted in higher MGO levels.


2004 ◽  
Vol 91 (6) ◽  
pp. 841-847 ◽  
Author(s):  
Ilja C. W. Arts ◽  
Aloys L. A. Sesink ◽  
Maria Faassen-Peters ◽  
Peter C. H. Hollman

Quercetin is an important dietary flavonoid with putative beneficial effects in the prevention of cancer and CVD. The in vivo bioactivity of quercetin depends on its bioavailability, which varies widely between foods. We used an in situ rat intestinal perfusion model to study whether differential small intestinal hydrolysis of the sugar moiety of five naturally occurring quercetin glycosides determines the small intestinal uptake and subsequent biliary excretion of quercetin. After 30 min perfusion, a decrease of intact quercetin glycoside in perfusate was observed for quercetin-3-O-ß-glucoside (20·9 (sem 1·4) μmol/l) and quercetin-4′-O-ß-glucoside (23·5 (sem 1·6) μmol/l), but not of quercetin-3-O-ß-galactoside, quercetin-3-O-ß-rhamnoside and quercetin-3-O-α-arabinopyranoside. Appearance of free quercetin in perfusate and conjugated quercetin metabolites (quercetin, isorhamnetin, and tamarixetin) in portal and peripheral plasma and bile were also significantly greater after treatment with quercetin-3-O-ß-glucoside or quercetin-4′-O-ß-glucoside compared with any of the other glycosides. Thus, the type of sugar moiety is a major determinant of the small intestinal absorption of quercetin glycosides, but the position (3 or 4′) of the glucose moiety does not further influence absorption. The poor bioavailability of important dietary quercetin glycosides has implications for their in vivo bioactivities.


Sign in / Sign up

Export Citation Format

Share Document