scholarly journals Measuring the absolute decay probability of82Sr by ion implantation

2012 ◽  
Vol 85 (2) ◽  
Author(s):  
C. J. Gross ◽  
K. P. Rykaczewski ◽  
D. W. Stracener ◽  
M. Wolinska-Cichocka ◽  
R. L. Varner ◽  
...  
Author(s):  
P. Ling ◽  
R. Gronsky ◽  
J. Washburn

The defect microstructures of Si arising from ion implantation and subsequent regrowth for a (111) substrate have been found to be dominated by microtwins. Figure 1(a) is a typical diffraction pattern of annealed ion-implanted (111) Si showing two groups of extra diffraction spots; one at positions (m, n integers), the other at adjacent positions between <000> and <220>. The object of the present paper is to show that these extra reflections are a direct consequence of the microtwins in the material.


Author(s):  
P. Echlin ◽  
M. McKoon ◽  
E.S. Taylor ◽  
C.E. Thomas ◽  
K.L. Maloney ◽  
...  

Although sections of frozen salt solutions have been used as standards for x-ray microanalysis, such solutions are less useful when analysed in the bulk form. They are poor thermal and electrical conductors and severe phase separation occurs during the cooling process. Following a suggestion by Whitecross et al we have made up a series of salt solutions containing a small amount of graphite to improve the sample conductivity. In addition, we have incorporated a polymer to ensure the formation of microcrystalline ice and a consequent homogenity of salt dispersion within the frozen matrix. The mixtures have been used to standardize the analytical procedures applied to frozen hydrated bulk specimens based on the peak/background analytical method and to measure the absolute concentration of elements in developing roots.


Author(s):  
E.G. Bithell ◽  
W.M. Stobbs

It is well known that the microstructural consequences of the ion implantation of semiconductor heterostructures can be severe: amorphisation of the damaged region is possible, and layer intermixing can result both from the original damage process and from the enhancement of the diffusion coefficients for the constituents of the original composition profile. A very large number of variables are involved (the atomic mass of the target, the mass and energy of the implant species, the flux and the total dose, the substrate temperature etc.) so that experimental data are needed despite the existence of relatively well developed models for the implantation process. A major difficulty is that conventional techniques (e.g. electron energy loss spectroscopy) have inadequate resolution for the quantification of any changes in the composition profile of fine scale multilayers. However we have demonstrated that the measurement of 002 dark field intensities in transmission electron microscope images of GaAs / AlxGa1_xAs heterostructures can allow the measurement of the local Al / Ga ratio.


Author(s):  
C. M. Payne ◽  
P. M. Tennican

In the normal peripheral circulation there exists a sub-population of lymphocytes which is ultrastructurally distinct. This lymphocyte is identified under the electron microscope by the presence of cytoplasmic microtubular-like inclusions called parallel tubular arrays (PTA) (Figure 1), and contains Fc-receptors for cytophilic antibody. In this study, lymphocytes containing PTA (PTA-lymphocytes) were quantitated from serial peripheral blood specimens obtained from two patients with Epstein -Barr Virus mononucleosis and two patients with cytomegalovirus mononucleosis. This data was then correlated with the clinical state of the patient.It was determined that both the percentage and absolute number of PTA- lymphocytes was highest during the acute phase of the illness. In follow-up specimens, three of the four patients' absolute lymphocyte count fell to within normal limits before the absolute PTA-lymphocyte count.In one patient who was followed for almost a year, the absolute PTA- lymphocyte count was consistently elevated (Figure 2). The estimation of absolute PTA-lymphocyte counts was determined to be valid after a morphometric analysis of the cellular areas occupied by PTA during the acute and convalescent phases of the disease revealed no statistical differences.


Author(s):  
C. Hayzelden ◽  
J. L. Batstone

Epitaxial reordering of amorphous Si(a-Si) on an underlying single-crystal substrate occurs well below the melt temperature by the process of solid phase epitaxial growth (SPEG). Growth of crystalline Si(c-Si) is known to be enhanced by the presence of small amounts of a metallic phase, presumably due to an interaction of the free electrons of the metal with the covalent Si bonds near the growing interface. Ion implantation of Ni was shown to lower the crystallization temperature of an a-Si thin film by approximately 200°C. Using in situ transmission electron microscopy (TEM), precipitates of NiSi2 formed within the a-Si film during annealing, were observed to migrate, leaving a trail of epitaxial c-Si. High resolution TEM revealed an epitaxial NiSi2/Si(l11) interface which was Type A. We discuss here the enhanced nucleation of c-Si and subsequent silicide-mediated SPEG of Ni-implanted a-Si.Thin films of a-Si, 950 Å thick, were deposited onto Si(100) wafers capped with 1000Å of a-SiO2. Ion implantation produced sharply peaked Ni concentrations of 4×l020 and 2×l021 ions cm−3, in the center of the films.


Author(s):  
Stuart McKernan ◽  
C. Barry Carter

The determination of the absolute polarity of a polar material is often crucial to the understanding of the defects which occur in such materials. Several methods exist by which this determination may be performed. In bulk, single-domain specimens, macroscopic techniques may be used, such as the different etching behavior, using the appropriate etchant, of surfaces with opposite polarity. X-ray measurements under conditions where Friedel’s law (which means that the intensity of reflections from planes of opposite polarity are indistinguishable) breaks down can also be used to determine the absolute polarity of bulk, single-domain specimens. On the microscopic scale, and particularly where antiphase boundaries (APBs), which separate regions of opposite polarity exist, electron microscopic techniques must be employed. Two techniques are commonly practised; the first [1], involves the dynamical interaction of hoLz lines which interfere constructively or destructively with the zero order reflection, depending on the crystal polarity. The crystal polarity can therefore be directly deduced from the relative intensity of these interactions.


Author(s):  
N. Lewis ◽  
E. L. Hall ◽  
A. Mogro-Campero ◽  
R. P. Love

The formation of buried oxide structures in single crystal silicon by high-dose oxygen ion implantation has received considerable attention recently for applications in advanced electronic device fabrication. This process is performed in a vacuum, and under the proper implantation conditions results in a silicon-on-insulator (SOI) structure with a top single crystal silicon layer on an amorphous silicon dioxide layer. The top Si layer has the same orientation as the silicon substrate. The quality of the outermost portion of the Si top layer is important in device fabrication since it either can be used directly to build devices, or epitaxial Si may be grown on this layer. Therefore, careful characterization of the results of the ion implantation process is essential.


Author(s):  
G. Remond ◽  
R.H. Packwood ◽  
C. Gilles ◽  
S. Chryssoulis

Merits and limitations of layered and ion implanted specimens as possible reference materials to calibrate spatially resolved analytical techniques are discussed and illustrated for the case of gold analysis in minerals by means of x-ray spectrometry with the EPMA. To overcome the random heterogeneities of minerals, thin film deposition and ion implantation may offer an original approach to the manufacture of controlled concentration/ distribution reference materials for quantification of trace elements with the same matrix as the unknown.In order to evaluate the accuracy of data obtained by EPMA we have compared measured and calculated x-ray intensities for homogeneous and heterogeneous specimens. Au Lα and Au Mα x-ray intensities were recorded at various electron beam energies, and hence at various sampling depths, for gold coated and gold implanted specimens. X-ray intensity calculations are based on the use of analytical expressions for both the depth ionization Φ (ρz) and the depth concentration C (ρz) distributions respectively.


Author(s):  
John D. Rubio

The degradation of steam generator tubing at nuclear power plants has become an important problem for the electric utilities generating nuclear power. The material used for the tubing, Inconel 600, has been found to be succeptible to intergranular attack (IGA). IGA is the selective dissolution of material along its grain boundaries. The author believes that the sensitivity of Inconel 600 to IGA can be minimized by homogenizing the near-surface region using ion implantation. The collisions between the implanted ions and the atoms in the grain boundary region would displace the atoms and thus effectively smear the grain boundary.To determine the validity of this hypothesis, an Inconel 600 sample was implanted with 100kV N2+ ions to a dose of 1x1016 ions/cm2 and electrolytically etched in a 5% Nital solution at 5V for 20 seconds. The etched sample was then examined using a JEOL JSM25S scanning electron microscope.


Author(s):  
D.I. Potter ◽  
M. Ahmed ◽  
K. Ruffing

Ion implantation, used extensively for the past decade in fabricating semiconductor devices, now provides a unique means for altering the near-surface chemical compositions and microstructures of metals. These alterations often significantly improve physical properties that depend on the surface of the material; for example, catalysis, corrosion, oxidation, hardness, friction and wear. Frequently the mechanisms causing these beneficial alterations and property changes remain obscure and much of the current research in the area of ion implantation metallurgy is aimed at identifying such mechanisms. Investigators thus confront two immediate questions: To what extent is the chemical composition changed by implantation? What is the resulting microstructure? These two questions can be investigated very fruitfully with analytical electron microscopy (AEM), as described below.


Sign in / Sign up

Export Citation Format

Share Document