A Way of Enhancing Test Quality and Restraining the Increase of Test Cost for Deep Sub-micron Integrated Circuits

Author(s):  
Jun Du ◽  
Yuanfu Zhao ◽  
Lixin Yu
Electronics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 680
Author(s):  
Huaguo Liang ◽  
Jinlei Wan ◽  
Tai Song ◽  
Wangchao Hou

With the growing complexity of integrated circuits (ICs), more and more test items are required in testing. However, the large number of invalid items (which narrowly pass the test) continues to increase the test time and, consequently, test costs. Aiming to address the problems of long test time and reduced test item efficiency, this paper presents a method which combines a fast correlation-based filter (FCBF) and a weighted naive Bayesian model which can identify the most effective items and make accurate quality predictions. Experimental results demonstrate that the proposed method reduces test time by around 2.59% and leads to fewer test escapes compared with the recently adopted test methods. The study shows that the proposed method can effectively reduce the test cost without jeopardizing test quality excessively.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Chi-Jih Shih ◽  
Chih-Yao Hsu ◽  
Chun-Yi Kuo ◽  
James Li ◽  
Jiann-Chyi Rau ◽  
...  

Testing is regarded as one of the most difficult challenges for three-dimensional integrated circuits (3D ICs). In this paper, we want to optimize the cost of TAM (test access mechanism) and the test time for 3D IC. We used both greedy and simulated annealing algorithms to solve this optimization problem. We compare the results of two assumptions:soft-die modeandhard-die mode. The former assumes that the DfT of dies cannot be changed, while the latter assumes that the DfT of dies can be adjusted. The results show that thermal-aware cooptimization is essential to decide the optimal TAM and test schedule. Blindly adding TAM cannot reduce the total test cost due to temperature constraints. Another conclusion is that soft-die mode is more effective than hard-die mode to reduce the total test cost for 3D IC.


1992 ◽  
Vol 3 (1) ◽  
pp. 93-102 ◽  
Author(s):  
Claude Thibeault ◽  
Yvon Savaria ◽  
Jean -Louis Houle

Author(s):  
Simon Thomas

Trends in the technology development of very large scale integrated circuits (VLSI) have been in the direction of higher density of components with smaller dimensions. The scaling down of device dimensions has been not only laterally but also in depth. Such efforts in miniaturization bring with them new developments in materials and processing. Successful implementation of these efforts is, to a large extent, dependent on the proper understanding of the material properties, process technologies and reliability issues, through adequate analytical studies. The analytical instrumentation technology has, fortunately, kept pace with the basic requirements of devices with lateral dimensions in the micron/ submicron range and depths of the order of nonometers. Often, newer analytical techniques have emerged or the more conventional techniques have been adapted to meet the more stringent requirements. As such, a variety of analytical techniques are available today to aid an analyst in the efforts of VLSI process evaluation. Generally such analytical efforts are divided into the characterization of materials, evaluation of processing steps and the analysis of failures.


Author(s):  
L.J. Chen ◽  
Y.F. Hsieh

One measure of the maturity of a device technology is the ease and reliability of applying contact metallurgy. Compared to metal contact of silicon, the status of GaAs metallization is still at its primitive stage. With the advent of GaAs MESFET and integrated circuits, very stringent requirements were placed on their metal contacts. During the past few years, extensive researches have been conducted in the area of Au-Ge-Ni in order to lower contact resistances and improve uniformity. In this paper, we report the results of TEM study of interfacial reactions between Ni and GaAs as part of the attempt to understand the role of nickel in Au-Ge-Ni contact of GaAs.N-type, Si-doped, (001) oriented GaAs wafers, 15 mil in thickness, were grown by gradient-freeze method. Nickel thin films, 300Å in thickness, were e-gun deposited on GaAs wafers. The samples were then annealed in dry N2 in a 3-zone diffusion furnace at temperatures 200°C - 600°C for 5-180 minutes. Thin foils for TEM examinations were prepared by chemical polishing from the GaA.s side. TEM investigations were performed with JE0L- 100B and JE0L-200CX electron microscopes.


Author(s):  
E.D. Wolf

Most microelectronics devices and circuits operate faster, consume less power, execute more functions and cost less per circuit function when the feature-sizes internal to the devices and circuits are made smaller. This is part of the stimulus for the Very High-Speed Integrated Circuits (VHSIC) program. There is also a need for smaller, more sensitive sensors in a wide range of disciplines that includes electrochemistry, neurophysiology and ultra-high pressure solid state research. There is often fundamental new science (and sometimes new technology) to be revealed (and used) when a basic parameter such as size is extended to new dimensions, as is evident at the two extremes of smallness and largeness, high energy particle physics and cosmology, respectively. However, there is also a very important intermediate domain of size that spans from the diameter of a small cluster of atoms up to near one micrometer which may also have just as profound effects on society as “big” physics.


Author(s):  
John R. Devaney

Occasionally in history, an event may occur which has a profound influence on a technology. Such an event occurred when the scanning electron microscope became commercially available to industry in the mid 60's. Semiconductors were being increasingly used in high-reliability space and military applications both because of their small volume but, also, because of their inherent reliability. However, they did fail, both early in life and sometimes in middle or old age. Why they failed and how to prevent failure or prolong “useful life” was a worry which resulted in a blossoming of sophisticated failure analysis laboratories across the country. By 1966, the ability to build small structure integrated circuits was forging well ahead of techniques available to dissect and analyze these same failures. The arrival of the scanning electron microscope gave these analysts a new insight into failure mechanisms.


Author(s):  
N. Rozhanski ◽  
V. Lifshitz

Thin films of amorphous Ni-Nb alloys are of interest since they can be used as diffusion barriers for integrated circuits on Si. A native SiO2 layer is an effective barrier for Ni diffusion but it deformation during the crystallization of the alloy film lead to the appearence of diffusion fluxes through it and the following formation of silicides. This study concerns the direct evidence of the action of stresses in the process of the crystallization of Ni-Nb films on Si and the structure of forming NiSi2 islands.


Author(s):  
S. Khadpe ◽  
R. Faryniak

The Scanning Electron Microscope (SEM) is an important tool in Thick Film Hybrid Microcircuits Manufacturing because of its large depth of focus and three dimensional capability. This paper discusses some of the important areas in which the SEM is used to monitor process control and component failure modes during the various stages of manufacture of a typical hybrid microcircuit.Figure 1 shows a thick film hybrid microcircuit used in a Motorola Paging Receiver. The circuit consists of thick film resistors and conductors screened and fired on a ceramic (aluminum oxide) substrate. Two integrated circuit dice are bonded to the conductors by means of conductive epoxy and electrical connections from each integrated circuit to the substrate are made by ultrasonically bonding 1 mil aluminum wires from the die pads to appropriate conductor pads on the substrate. In addition to the integrated circuits and the resistors, the circuit includes seven chip capacitors soldered onto the substrate. Some of the important considerations involved in the selection and reliability aspects of the hybrid circuit components are: (a) the quality of the substrate; (b) the surface structure of the thick film conductors; (c) the metallization characteristics of the integrated circuit; and (d) the quality of the wire bond interconnections.


Sign in / Sign up

Export Citation Format

Share Document