Enhancing static noise margin while reducing power consumption

Author(s):  
Azam Beg ◽  
Amr Elchouemi
2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Mathan Natarajamoorthy ◽  
Jayashri Subbiah ◽  
Nurul Ezaila Alias ◽  
Michael Loong Peng Tan

The development of the nanoelectronics semiconductor devices leads to the shrinking of transistors channel into nanometer dimension. However, there are obstacles that appear with downscaling of the transistors primarily various short-channel effects. Graphene nanoribbon field-effect transistor (GNRFET) is an emerging technology that can potentially solve the issues of the conventional planar MOSFET imposed by quantum mechanical (QM) effects. GNRFET can also be used as static random-access memory (SRAM) circuit design due to its remarkable electronic properties. For high-speed operation, SRAM cells are more reliable and faster to be effectively utilized as memory cache. The transistor sizing constraint affects conventional 6T SRAM in a trade-off in access and write stability. This paper investigates on the stability performance in retention, access, and write mode of 15 nm GNRFET-based 6T and 8T SRAM cells with that of 16 nm FinFET and 16 nm MOSFET. The design and simulation of the SRAM model are simulated in synopsys HSPICE. GNRFET, FinFET, and MOSFET 8T SRAM cells give better performance in static noise margin (SNM) and power consumption than 6T SRAM cells. The simulation results reveal that the GNRFET, FinFET, and MOSFET-based 8T SRAM cells improved access static noise margin considerably by 58.1%, 28%, and 20.5%, respectively, as well as average power consumption significantly by 97.27%, 99.05%, and 83.3%, respectively, to the GNRFET, FinFET, and MOSFET-based 6T SRAM design.


Memories are an essential unit of any digital circuit, thus their power consumption must be considered during the designing process of the cells. To improve performance, reduce delay and increase stability, it is advisable to decrease the power consumed by the memory. Due to high demand of speed, high performance, there’s a need to decrease the size of the device, thereby increasing the devices placed per chip. This high integration makes chips more complex but improves device performance. Design of SRAM cells with speed and low power is crucial so as to replace DRAMs. The layout of SRAM has advanced to meet the requirements of the present industry in accordance with parameters like delay, power consumption and stability etc. This paper presents the aim of analyzing different technologies used to make SRAM more efficient in terms of parameters such as static noise margin, latency and dissipation of power. The stability investigation of SRAM cells are usually derived from the Static Noise Margin (SNM) analysis. Here we observe a SRAM design which has used dynamic logic and pass transistor logic. We further study the effects made on this design by employing various technologies such as AVL-S, AVL-G, AVL and MT-CMOS, at 180nm CMOS technology to achieve enhancements in delay, power consumption and performance. The proposed circuits are simulated and the results obtained have been analyzed to show significant improvement over conventional SRAM designs. Cadence Virtuoso simulation is used to confirm all the results obtained in this paper for the simulation of 180 nm CMOS technology SRAMs.


Author(s):  
Pooran Singh ◽  
Santosh Vishvakarma

An ultra-low power (ULP), power gated static random access memory (SRAM) is presented for Internet of Things (IoT) applications, which operates in sub-threshold voltage ranges from 300mV to 500mV. The proposed SRAM has tendency to operate in low supply voltages with high static and dynamic noise margins. The IoT application involves battery enabled low leakage memory architecture in subthreshold regime which has low power consumption. Therefore, to improve power consumption along with better cell stability, a power gated 10T SRAM is presented. The proposed cell uses a power gated p-MOS transistor to reduce the leakage power or static power in standby mode. Moreover, due to the schmitt triggering and read decoupling of 10T SRAM the static and dynamic behavior in read, write and standby mode has shown enhanced tolerance at different process, voltage and temperature (PVT) conditions. The proposed SRAM shows better results in terms of leakage power, read static noise margin (RSNM), write static noise margin (WSNM), write-ability or write trip point (WTP), read-write energy and dynamic read margin (DRM). Further, these parameters are observed at 8-Kilo bit (Kb) and compared with already existing SRAM architectures. It is observed that the leakage power is reduced by 1/81×, 1/75× of the conventional 6T (C6T) SRAM and read decoupled 8T (RD8T) SRAM, respectively at 300mV VDD. On the contrary, RSNM, WSNM, WTP and DRM values are improved by 3×, 2×, 11.11% and 31.8% as compared to C6T SRAM, respectively. Similarly, proposed 10T has 1.48×, 25% and 9.75% better RSNM, WSNM and WTP values as compared to RD8T SRAM, respectively at 300mV VDD.


Author(s):  
Jitendra Kumar Mishra ◽  
Lakshmi Likhitha Mankali ◽  
Kavindra Kandpal ◽  
Prasanna Kumar Misra ◽  
Manish Goswami

The present day electronic gadgets have semiconductor memory devices to store data. The static random access memory (SRAM) is a volatile memory, often preferred over dynamic random access memory (DRAM) due to higher speed and lower power dissipation. However, at scaling down of technology node, the leakage current in SRAM often increases and degrades its performance. To address this, the voltage scaling is preferred which subsequently affects the stability and delay of SRAM. This paper therefore presents a negative bit-line (NBL) write assist circuit which is used for enhancing the write ability while a separate (isolated) read buffer circuit is used for improving the read stability. In addition to this, the proposed design uses a tail (stack) transistor to decrease the overall static power dissipation and also to maintain the hold stability. The comparison of the proposed design has been done with state-of-the-art work in terms of write static noise margin (WSNM), write delay, read static noise margin (RSNM) and other parameters. It has been observed that there is an improvement of 48%, 11%, 19% and 32.4% in WSNM while reduction of 33%, 39%, 48% and 22% in write delay as compared to the conventional 6T SRAM cell, NBL, [Formula: see text] collapse and 9T UV SRAM, respectively.


2021 ◽  
Vol 7 ◽  
pp. 22-34
Author(s):  
Vinod Kumar ◽  
Ram Murti Rawat

A paper that examines the factors thataffect the Static Noise Margin (SNM) of a StaticRandom Access memories. At an equivalent time,they specialise in optimizing Read and Writeoperation of 8T SRAM cell which is best than 6TSRAM cell Using Swing Restoration Dual NodeVoltage. The read and Write operation and improveStability analysis. This SRAM technique on thecircuit or architecture level is required to improveread and write operation. during this paperComparative Analysis of 6T and 8T SRAM Cellswith Improved Read and Write Margin is completedfor 180 nm Technology with Cadence Virtuososchematics Tool.This Paper is organized as follows: thecharacteristics of 6T SRAM cell are described arerepresented in section VIII. In section IX, proposed8T SRAM cell is described. In section X, Standard8T SRAM cell is described. Section XI includes thesimulation results which give comparison of variousparameters of 6T and 8T SRAM cells. In Section XIISimulation Results and DC analysis and sectionXIII conclusion the work.


Author(s):  
Yogesh Shrivastava ◽  
Tarun Kumar Gupta

Ternary logic has been demonstrated as a superior contrasting option to binary logic. This paper presents a ternary subtractor circuit in which the input signal is converted into binary. The proposed design is implemented using Carbon Nanotube Field Effect Transistor (CNTFET), a forefront innovation. A correlation has been made in the proposed design on parameters like Power-Delay Product (PDP), Energy Delay Product (EDP), average power consumption, delay and static noise margin. Every one of these parameters is obtained by simulating the circuits on the HSPICE simulator. The proposed design indicates an improvement of 60.14%, 59.34%, 74.98% and 84.28%, respectively, in power consumption, delay, PDP and EDP individually in correlation with recent designs. The increased carbon nanotubes least affect the proposed subtractor design. In noise analysis, the proposed design outperformed all the existing designs.


Sign in / Sign up

Export Citation Format

Share Document