Laser-activated PLGA theranostic agents for cancer therapy in vivo

Author(s):  
Yang Sun ◽  
Chengcheng Niu ◽  
Yuanyi Zheng ◽  
Haitao Ran ◽  
Rongzhong Huang ◽  
...  
Diagnostics ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 838
Author(s):  
Katharina A. Sterenczak ◽  
Nadine Stache ◽  
Sebastian Bohn ◽  
Stephan Allgeier ◽  
Bernd Köhler ◽  
...  

During breast cancer therapy, paclitaxel and trastuzumab are both associated with adverse effects such as chemotherapy-induced peripheral neuropathy and other systemic side effects including ocular complications. Corneal nerves are considered part of the peripheral nervous system and can be imaged non-invasively by confocal laser scanning microscopy (CLSM) on the cellular level. Thus, in vivo CLSM imaging of structures of the corneal subbasal nerve plexus (SNP) such as sensory nerves or dendritic cells (DCs) can be a powerful tool for the assessment of corneal complications during cancer treatment. During the present study, the SNP of a breast cancer patient was analyzed over time by using large-scale in vivo CLSM in the course of paclitaxel and trastuzumab therapy. The same corneal regions could be re-identified over time. While the subbasal nerve morphology did not alter significantly, a change in dendritic cell density and an additional local burst within the first 11 weeks of therapy was detected, indicating treatment-mediated corneal inflammatory processes. Ocular structures such as nerves and dendritic cells could represent useful biomarkers for the assessment of ocular adverse effects during cancer therapy and their management, leading to a better visual prognosis.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 71
Author(s):  
Thashini Moodley ◽  
Moganavelli Singh

With increasing incidence and mortality rates, cancer remains one of the most devastating global non-communicable diseases. Restricted dosages and decreased bioavailability, often results in lower therapeutic outcomes, triggering the development of resistance to conventionally used drug/gene therapeutics. The development of novel therapeutic strategies using multimodal nanotechnology to enhance specificity, increase bioavailability and biostability of therapeutics with favorable outcomes is critical. Gated vectors that respond to endogenous or exogenous stimuli, and promote targeted tumor delivery without prematurely cargo loss are ideal. Mesoporous silica nanoparticles (MSNs) are effective delivery systems for a variety of therapeutic agents in cancer therapy. MSNs possess a rigid framework and large surface area that can incorporate supramolecular constructs and varying metal species that allow for stimuli-responsive controlled release functions. Its high interior loading capacity can incorporate combination drug/gene therapeutic agents, conferring increased bioavailability and biostability of the therapeutic cargo. Significant advances in the engineering of MSNs structural and physiochemical characteristics have since seen the development of nanodevices with promising in vivo potential. In this review, current trends of multimodal MSNs being developed and their use in stimuli-responsive passive and active targeting in cancer therapy will be discussed, focusing on light, redox, pH, and temperature stimuli.


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Keegan Guidolin ◽  
Lili Ding ◽  
Juan Chen ◽  
Brian C. Wilson ◽  
Gang Zheng

Abstract Porphysomes (PS) are liposome-like nanoparticles comprising pyropheophorbide-conjugated phospholipids that have demonstrated potential as multimodal theranostic agents for applications that include phototherapies, targeted drug delivery and in vivo fluorescence, photoacoustic, magnetic resonance or positron emission imaging. Previous therapeutic applications focused primarily on photothermal therapy (PTT) and suggested that PSs require target-triggered activation for use as photodynamic therapy (PDT) sensitizers. Here, athymic nude mice bearing subcutaneous A549 human lung tumors were randomized into treatment and control groups: PS-PDT at various doses, PS-only and no treatment negative controls, as well as positive controls using the clinical photosensitizer Photofrin. Animals were followed for 30 days post-treatment. PS-PDT at all doses demonstrated a significant tumor ablative effect, with the greatest effect seen with 10 mg/kg PS at a drug-light interval of 24 h. By comparison, negative controls (PS-only, Photofrin-only, and no treatment) showed uncontrolled tumor growth. PDT with Photofrin at 5 mg/kg and PS at 10 mg/kg demonstrated similar tumor growth suppression and complete tumor response rates (15 vs. 25%, p = 0.52). Hence, porphysome nanoparticles are an effective PDT agent and have the additional advantages of multimodal diagnostic and therapeutic applications arising from their intrinsic structure. Porphysomes may also be the first single all-organic agent capable of concurrent PDT and PTT.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Fangfang Tao ◽  
Yanrong Zhang ◽  
Zhiqian Zhang

Mitochondria are highly dynamic double-membrane organelles which play a well-recognized role in ATP production, calcium homeostasis, oxidation-reduction (redox) status, apoptotic cell death, and inflammation. Dysfunction of mitochondria has long been observed in a number of human diseases, including cancer. Targeting mitochondria metabolism in tumors as a cancer therapeutic strategy has attracted much attention for researchers in recent years due to the essential role of mitochondria in cancer cell growth, apoptosis, and progression. On the other hand, a series of studies have indicated that traditional medicinal herbs, including traditional Chinese medicines (TCM), exert their potential anticancer effects as an effective adjunct treatment for alleviating the systemic side effects of conventional cancer therapies, for reducing the risk of recurrence and cancer mortality and for improving the quality of patients’ life. An amazing feature of these structurally diverse bioactive components is that majority of them target mitochondria to provoke cancer cell-specific death program. The aim of this review is to summarize the in vitro and in vivo studies about the role of these herbs, especially their bioactive compounds in the modulation of the disturbed mitochondrial function for cancer therapy.


2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Songtao Zhang ◽  
Longhai Jin ◽  
Jianhua Liu ◽  
Yang Liu ◽  
Tianqi Zhang ◽  
...  

AbstractIn spite of the tumor microenvironments responsive cancer therapy based on Fenton reaction (i.e., chemodynamic therapy, CDT) has been attracted more attentions in recent years, the limited Fenton reaction efficiency is the important obstacle to further application in clinic. Herein, we synthesized novel FeO/MoS2 nanocomposites modified by bovine serum albumin (FeO/MoS2-BSA) with boosted Fenton reaction efficiency by the synergistic effect of co-catalyze and photothermal effect of MoS2 nanosheets triggered by the second near-infrared (NIR II) light. In the tumor microenvironments, the MoS2 nanosheets not only can accelerate the conversion of Fe3+ ions to Fe2+ ions by Mo4+ ions on their surface to improve Fenton reaction efficiency, but also endow FeO/MoS2-BSA with good photothermal performances for photothermal-enhanced CDT and photothermal therapy (PTT). Consequently, benefiting from the synergetic-enhanced CDT/PTT, the tumors are eradicated completely in vivo. This work provides innovative synergistic strategy for constructing nanocomposites for highly efficient CDT.


2014 ◽  
Vol 26 (48) ◽  
pp. 8210-8216 ◽  
Author(s):  
Mei Chen ◽  
Shaoheng Tang ◽  
Zhide Guo ◽  
Xiaoyong Wang ◽  
Shiguang Mo ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiaojun Wu ◽  
Min Yu ◽  
Zhuxia Zhang ◽  
Feng Leng ◽  
Yue Ma ◽  
...  

Abstract Background Targeting ubiquitin-dependent proteolysis is one of the strategies in cancer therapy. CRLCDT2 and CRLDDB2 are two key E3 ubiquitin ligases involved in DNA replication and DNA damage repair. But CDT2 and DDB2 are opposite prognostic factors in kinds of cancers, and the underlining mechanism needs to be elucidated. Methods Small interfering RNAs were used to determine the function of target genes. Co-immunoprecipitation (Co-IP) was performed to detect the interaction between DDB2 and CDT2. Immunofluorescence assays and fluorescence activating cell sorting (FACS) were used to measure the change of DNA content. In vivo ubiquitination assay was carried out to clarify the ubiquitination of CDT2 mediated by DDB2. Cell synchronization was performed to arrest cells at G1/S and S phase. The mechanism involved in DDB2-mediated CDT2 degradation was investigated by constructing plasmids with mutant variants and measured by Western blot. Immunohistochemistry was performed to determine the relationship between DDB2 and CDT2. Paired two-side Student’s t-test was used to measure the significance of the difference between control group and experimental group. Results Knockdown of DDB2 stabilized CDT2, while over-expression of DDB2 enhanced ubiquitination of CDT2, and subsequentially degradation of CDT2. Although both DDB2 and CDT2 contain PIP (PCNA-interacting protein) box, PIP box is dispensable for DDB2-mediated CDT2 degradation. Knockdown of PCNA had negligible effects on the stability of CDT2, but promoted accumulation of CDT1, p21 and SET8. Silencing of DDB2 arrested cell cycle in G1 phase, destabilized CDT1 and reduced the chromatin loading of MCMs, thereby blocked the formation of polyploidy induced by ablation of CDT2. In breast cancer and ovarian teratoma tissues, high level of DDB2 was along with lower level of CDT2. Conclusions We found that CRL4DDB2 is the novel E3 ubiquitin ligases of CDT2, and DDB2 regulates DNA replication through indirectly regulates CDT1 protein stability by degrading CDT2 and promotes the assembly of pre-replication complex. Our results broaden the horizon for understanding the opposite function of CDT2 and DDB2 in tumorigenesis, and may provide clues for drug discovery in cancer therapy.


2018 ◽  
Vol 115 (3) ◽  
pp. 501-506 ◽  
Author(s):  
Meng Qiu ◽  
Dou Wang ◽  
Weiyuan Liang ◽  
Liping Liu ◽  
Yin Zhang ◽  
...  

A biodegradable drug delivery system (DDS) is one the most promising therapeutic strategies for cancer therapy. Here, we propose a unique concept of light activation of black phosphorus (BP) at hydrogel nanostructures for cancer therapy. A photosensitizer converts light into heat that softens and melts drug-loaded hydrogel-based nanostructures. Drug release rates can be accurately controlled by light intensity, exposure duration, BP concentration, and hydrogel composition. Owing to sufficiently deep penetration of near-infrared (NIR) light through tissues, our BP-based system shows high therapeutic efficacy for treatment of s.c. cancers. Importantly, our drug delivery system is completely harmless and degradable in vivo. Together, our work proposes a unique concept for precision cancer therapy by external light excitation to release cancer drugs. If these findings are successfully translated into the clinic, millions of patients with cancer will benefit from our work.


2021 ◽  
Author(s):  
Jun Wu ◽  
Qi-Juan Yuan ◽  
Li Wang ◽  
Jun Huang ◽  
Wei Zhao

Amino acid-based poly(ester amide) (PEA) has been utilized for various biomedical applications for its tunable mechanical property, good biocompatibility, and biodegradability. However, bioactive components have rarely been incorporated into the...


2021 ◽  
Author(s):  
Yonglu Li ◽  
Xin Yu ◽  
Lingchi Deng ◽  
Su Zhou ◽  
Yaxuan Wang ◽  
...  

Cancer has been threatening human health worldwide, whereas the its clinical therapies remains unsatisfied. In this study, the anti-cancer abilities of Tetrastigma hemsleyanum leaves flavone (TLF) were evaluated in vivo,...


Sign in / Sign up

Export Citation Format

Share Document