scholarly journals Comparative analysis of immune cell subsets in peripheral blood from patients with periodontal disease and healthy controls

2018 ◽  
Vol 194 (3) ◽  
pp. 380-390 ◽  
Author(s):  
W.-C. Cheng ◽  
F. Saleh ◽  
B. Abuaisha Karim ◽  
F. J. Hughes ◽  
L. S. Taams
2021 ◽  
Vol 10 (4) ◽  
pp. 875
Author(s):  
Kawaljit Kaur ◽  
Shahram Vaziri ◽  
Marcela Romero-Reyes ◽  
Avina Paranjpe ◽  
Anahid Jewett

Survival and function of immune subsets in the oral blood, peripheral blood and gingival tissues of patients with periodontal disease and healthy controls were assessed. NK and CD8 + T cells within the oral blood mononuclear cells (OBMCs) expressed significantly higher levels of CD69 in patients with periodontal disease compared to those from healthy controls. Similarly, TNF-α release was higher from oral blood of patients with periodontal disease when compared to healthy controls. Increased activation induced cell death of peripheral blood mononuclear cells (PBMCs) but not OBMCs from patients with periodontal disease was observed when compared to those from healthy individuals. Unlike those from healthy individuals, OBMC-derived supernatants from periodontitis patients exhibited decreased ability to induce secretion of IFN-γ by allogeneic healthy PBMCs treated with IL-2, while they triggered significant levels of TNF-α, IL-1β and IL-6 by untreated PBMCs. Interaction of PBMCs, or NK cells with intact or NFκB knock down oral epithelial cells in the presence of a periodontal pathogen, F. nucleatum, significantly induced a number of pro-inflammatory cytokines including IFN-γ. These studies indicated that the relative numbers of immune subsets obtained from peripheral blood may not represent the composition of the immune cells in the oral environment, and that orally-derived immune effectors may differ in survival and function from those of peripheral blood.


2020 ◽  
Vol 73 ◽  
pp. S667
Author(s):  
Tom Diedrich ◽  
Andreas Drolz ◽  
Ansgar Lohse ◽  
Johannes Kluwe ◽  
Julian Schulze Zur Wiesch

2020 ◽  
Vol 31 ◽  
pp. S1419-S1420
Author(s):  
H. Arasanz ◽  
M. Zuazo ◽  
L. Chocarro ◽  
A.I. Bocanegra Gondan ◽  
M. Martínez-Aguillo ◽  
...  

2021 ◽  
Vol 11 ◽  
Author(s):  
Xiaoping Hong ◽  
Shuhui Meng ◽  
Donge Tang ◽  
Tingting Wang ◽  
Liping Ding ◽  
...  

ObjectivePrimary Sjögren’s syndrome (pSS) is a systemic autoimmune disease, and its pathogenetic mechanism is far from being understood. In this study, we aimed to explore the cellular and molecular mechanisms that lead to pathogenesis of this disease.MethodsWe applied single-cell RNA sequencing (scRNA-seq) to 57,288 peripheral blood mononuclear cells (PBMCs) from five patients with pSS and five healthy controls. The immune cell subsets and susceptibility genes involved in the pathogenesis of pSS were analyzed. Flow cytometry was preformed to verify the result of scRNA-seq.ResultsWe identified two subpopulations significantly expand in pSS patients. The one highly expressing cytotoxicity genes is named as CD4+ CTLs cytotoxic T lymphocyte, and another highly expressing T cell receptor (TCR) variable gene is named as CD4+ TRAV13-2+ T cell. Flow cytometry results showed the percentages of CD4+ CTLs, which were profiled with CD4+ and GZMB+ staining; the total T cells of 10 patients with pSS were significantly higher than those of 10 healthy controls (P= 0.008). The expression level of IL-1β in macrophages, TCL1A in B cells, as well as interferon (IFN) response genes in most cell subsets was upregulated in the patients with pSS. Susceptibility genes including HLA-DRB5, CTLA4, and AQP3 were highly expressed in patients with pSS.ConclusionsOur data revealed disease-specific immune cell subsets and provided some potential new targets of pSS. Specific expansion of CD4+ CTLs may be involved in the pathogenesis of pSS, which might give valuable insights for therapeutic interventions of pSS.


2020 ◽  
Vol 21 (2) ◽  
pp. 477 ◽  
Author(s):  
Silvia Garavelli ◽  
Sara Bruzzaniti ◽  
Elena Tagliabue ◽  
Francesco Prattichizzo ◽  
Dario Di Silvestre ◽  
...  

Immune cell subsets and microRNAs have been independently proposed as type 1 diabetes (T1D) diagnostic and/or prognostic biomarkers. Here, we aimed to analyze the relationships between peripheral blood circulating immune cell subsets, plasmatic microRNAs, and T1D. Blood samples were obtained from both children with T1D at diagnosis and age-sex matched healthy controls. Then, immunophenotype assessed by flow cytometry was coupled with the quantification of 60 plasmatic microRNAs by quantitative RT-PCR. The associations between immune cell frequency, plasmatic microRNAs, and the parameters of pancreatic loss, glycemic control, and diabetic ketoacidosis were assessed by logistic regression models and correlation analyses. We found that the increase in specific plasmatic microRNAs was associated with T1D disease onset (let-7c-5p, let-7d-5p, let-7f-5p, let-7i-5p, miR-146a-5p, miR-423-3p, and miR-423-5p), serum C-peptide concentration (miR-142-5p and miR-29c-3p), glycated hemoglobin (miR-26a-5p and miR-223-3p) and the presence of ketoacidosis (miR-29c-3p) more strongly than the evaluated immune cell subset frequency. Some of these plasmatic microRNAs were shown to positively correlate with numbers of blood circulating B lymphocytes (miR-142-5p) and CD4+CD45RO+ (miR-146a-5p and miR-223-3p) and CD4+CD25+ cells (miR-423-3p and miR-223-3p) in children with T1D but not in healthy controls, suggesting a disease-specific microRNA association with immune dysregulation in T1D. In conclusion, our results suggest that, while blood co-circulating extracellular microRNAs and immune cell subsets may be biologically linked, microRNAs may better provide powerful information about T1D onset and severity.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 9-9
Author(s):  
Michael Abadier ◽  
Jose Estevam ◽  
Deborah Berg ◽  
Eric Robert Fedyk

Background Mezagitamab is a fully human immunoglobulin (Ig) G1 monoclonal antibody with high affinity to CD38 that depletes tumor cells expressing CD38 by antibody- and complement-dependent cytotoxicity. CD38 is a cell surface molecule that is highly expressed on myeloma cells, plasma cells, plasmablasts, and natural killer (NK) cells, and is induced on activated T cells and other suppressor cells including regulatory T (Tregs) and B (Bregs) cells. Data suggest that immune landscape changes in cancer patients and this may correlate with disease stage and clinical outcome. Monitoring specific immune cell subsets could predict treatment responses since certain cell populations either enhance or attenuate the anti-tumor immune response. Method To monitor the immune landscape changes in RRMM patients we developed a mass cytometry panel that measures 39-biomarkers to identify multiple immune cell subsets, including T cells (naïve, memory, effector, regulatory), B cells (naïve, memory, precursors, plasmablasts, regulatory), NK cells, NKT cells, gamma delta T cells, monocytes (classical, non-classical and intermediate), dendritic cells (mDC; myeloid and pDC; plasmacytoid) and basophils. After a robust analytical method validation, we tested cryopreserved peripheral blood and bone marrow mononuclear cells from 19 RRMM patients who received ≥ 3 prior lines of therapy. Patients were administered 300 or 600 mg SC mezagitamab on a QWx8, Q2Wx8 and then Q4Wx until disease progression schedule (NCT03439280). We compared the percent change in immune cell subsets at baseline versus week 4 and week 16. Results CD38 is expressed at different levels on immune cells and sensitivity to depletion by mezagitamab generally correlates positively with the density of expression. CD38 is expressed at high densities on plasmablasts, Bregs, NK-cells, pDC and basophils at baseline and this was associated with reductions in peripheral blood and bone marrow (plasmablasts, 95%, Bregs, 90%, NK-cells, 50%, pDC, 55% and basophils, 40%) at week 4 post treatment. In contrast, no changes occurred in the level of total T-cells and B-cells, which is consistent with low expression of CD38 on most cells of these large populations. Among the insensitive cell types, remaining NK-cells acquired an activated, proliferative and effector phenotype. We observed 60-150% increase in activation (CD69, HLA-DR), 110-200% increase in proliferation (Ki-67), and 40-375% increase in effector (IFN-γ) markers in peripheral blood and bone marrow. Importantly, NK-cells which did not express detectable CD38, also exhibited a similar phenotype possibly by a mechanism independent of CD38. Consistent with these data, the remaining CD4 and CD8 T-cell populations exhibited an activated effector phenotype as observed by 40-200% increase in activation, 60-200% increase in proliferation and 40-90% increase in effector markers in peripheral blood. A potential explanation for this acquisition of activated effector phenotypes could be a reduction in suppressive regulatory lymphocytes. Next, we measured levels of Tregs and Bregs, and observed that Bregs which are CD24hiCD38hi were reduced to 60-90% in peripheral blood and bone marrow. In contrast, total Tregs were reduced by only 5-25% because CD38 expression in Tregs appears as a spectrum where only ~10-20% are CD38+, and thus CD38+ Tregs were reduced more significantly (45-75%), reflecting the selectively of mezagitamab to cells expressing high levels of CD38. CD38+ Tregs are induced in RRMM patients, thus we looked at the phenotype of CD38-, CD38mid, and CD38high -expressing Tregs. We observed higher level of markers that correlate with highly suppressive Tregs such as Granzyme B, Ki-67, CTLA-4 and PD-1 in CD38high Tregs. Accordingly, the total Treg population exhibited a less active phenotype after exposure to mezagitamab, which selectively depleted the highly suppressive CD38+ Tregs. Conclusions Chronic treatment with mezagitamab is immunomodulatory in patients with RRMM, which is associated with reductions in tumor burden, subpopulations of B and T regulatory cells, and characterized by conventional NK and T cells exhibiting an activated, proliferative and effector phenotype. The immune landscape changes observed is consistent with the immunologic concept of converting the tumor microenvironment from cold-to-hot and highlights a key mechanistic effect of mezagitamab. Disclosures Berg: Takeda Pharmaceuticals Inc: Current Employment.


2014 ◽  
Vol 94 (1) ◽  
pp. 43-53 ◽  
Author(s):  
Hrvoje Valpotić ◽  
Marcela Šperanda ◽  
Ana Kovšca-Janjatović ◽  
Mislav Ðidara ◽  
Gordana Lacković ◽  
...  

Valpotić, H., Šperanda, M., Kovšca-Janjatović, A., Ðidara, M., Lacković, G., Božić, F., Habrun, B., Srečec, S., Mataušić-Pišl, M. and Valpotić, I. 2014. Levamisole stimulates proliferation of circulating and intestinal immune cell subsets, gut health and performance in weaned pigs. Can. J. Anim. Sci. 94: 43–53. With the growing knowledge of the porcine immune system and its endogenous modulation, it has been clearly stated that exogenous modulation through the use of substances able to modulate immune functions represents an important prophylactic/therapeutic approach in prevention/treatment of both stress- and F4+ and F18+ enterotoxigenic E. coli (ETEC)-induced infections accompanied weaning. The aim of this study was to evaluate the effectiveness of levamisole (LEVA; 2.5 mg kg−1 BW in 10 mL) applied per os to weaned pigs in proliferation of circulating and intestinal immune cell subsets throughout a period of 5 wk. Changes in proportion or number of peripheral blood and ileal mucosal leukocytes tested were studied either weekly by flow cytometry or at the end of the experiment (day 35) by immunohistology/histomorphometry, respectively. Pigs treated with LEVA had increased proportions of peripheral blood CD45+ lymphoid cells, CD4+ and CD8+ T cells, and CD21+ B cells (P<0.01) between days 14 and 35 following the treatment. Also, LEVA stimulated the proliferation of CD45RA+ naïve lymphoid cells in interfollicular (P<0.001) and follicular areas (P<0.05) of ileal Peyer’s patches at day 35 of the experiment. These pigs had a significantly higher (P<0.05) average body weight (19.7 vs. 17.1 kg) and weight gain at the end of experiment compared with the control pigs (for 15%). We conclude that LEVA stimulated the proliferation of circulating and intestinal lymphoid cell subsets tested and improved performance in weaned pigs, and thus, the drug may nonspecifically enhance their immunity/resistance to F4+ and F18+ ETEC strains.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jingzhan Zhang ◽  
Shirong Yu ◽  
Wen Hu ◽  
Man Wang ◽  
Dilinuer Abudoureyimu ◽  
...  

Vitiligo is a common immune-related depigmentation condition, and its pathogenesis remains unclear. This study used a combination of bioinformatics methods and expression analysis techniques to explore the relationship between immune cell infiltration and gene expression in vitiligo. Previously reported gene expression microarray data from the skin (GSE53146 and GSE75819) and peripheral blood (GSE80009 and GSE90880) of vitiligo patients and healthy controls was used in the analysis. R software was used to filter the differentially expressed genes (DEGs) in each dataset, and the KOBAS 2.0 server was used to perform functional enrichment analysis. Compared with healthy controls, the upregulated genes in skin lesions and peripheral blood leukocytes of vitiligo patents were highly enriched in immune response pathways and inflammatory response signaling pathways. Immunedeconv software and the EPIC method were used to analyze the expression levels of marker genes to obtain the immune cell population in the samples. In the lesional skin of vitiligo patients, the proportions of macrophages, B cells and NK cells were increased compared with healthy controls. In the peripheral blood of vitiligo patients, CD8+ T cells and macrophages were significantly increased. A coexpression analysis of the cell populations and DEGs showed that differentially expressed immune and inflammation response genes had a strong positive correlation with macrophages. The TLR4 receptor pathway, interferon gamma-mediated signaling pathway and lipopolysaccharide-related pathway were positively correlated with CD4+ T cells. Regarding immune response-related genes, the overexpression of IFITM2, TNFSF10, GZMA, ADAMDEC1, NCF2, ADAR, SIGLEC16, and WIPF2 were related to macrophage abundance, while the overexpression of ICOS, GPR183, RGS1, ILF2 and CD28 were related to CD4+ T cell abundance. GZMA and CXCL10 expression were associated with CD8+ T cell abundance. Regarding inflammatory response-related genes, the overexpression of CEBPB, ADAM8, CXCR3, and TNIP3 promoted macrophage infiltration. Only ADORA1 expression was associated with CD4+ T cell infiltration. ADAM8 and CXCL10 expression were associated with CD8+ T cell abundance. The overexpression of CCL18, CXCL10, FOS, NLRC4, LY96, HCK, MYD88, and KLRG1, which are related to inflammation and immune responses, were associated with macrophage abundance. We also found that immune cells infiltration in vitiligo was associated with antigen presentation-related genes expression. The genes and pathways identified in this study may point to new directions for vitiligo treatment.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 5580-5580
Author(s):  
Marco Romano ◽  
Lucia Catani ◽  
Daria Sollazzo ◽  
Martina Barone ◽  
Margherita Perricone ◽  
...  

Abstract Introduction: Myelofibrosis (MF) is a clonal disorder associated mainly with JAK2V617F and MPL mutations. Recently, a new mutation in the gene encoding calreticulin (CALR) was discovered in the majority of JAK2/MPL negative patients. MF is burdened by a high rate of potentially life-threatening infections. The issue of recurrent and opportunistic infections is increased after the introduction in clinical practice of JAK inhibitors with immunosuppressive activity. However, the role of crucial immune cell subsets is still poorly characterized. Here, we investigated the phenotype/function of selected immune cells in MF. Specifically, we focused on circulating regulatory (Tregs) and IL-17-producing T cells (Th17 cells), monocytes and dendritic cells (DCs). Monocyte-derived DCs were also characterized. Methods: We characterized circulating Th17 cells, Tregs, monocytes and DCs of 17 untreated MF patients and 8 healthy controls (HC) by flow cytometry. Th17 cells were identified as CD4+ CD161+ CD196+ cells while Tregs were enumerated as CD4+ CD25high CD127low T cells. We also tested the in vitro suppressive activity of circulating CD4+ CD25+ Tregs with a mixed leukocyte reaction assay. Two subpopulations of circulating DCs, myeloid CD11c+ and plasmacytoid CD123+cells, were enumerated as well. In addition, after immunomagnetic selection, we tested both phenotype of circulating monocytes and their capacity to differentiate into CD14-derived immature and mature DCs, using a specific cytokines cocktail. JAK2V617F and MPL mutations were detected with RT-PCR while the presence of CALR mutations were tested with Exon 9 Next Generation Sequencing assay. Results: JAK2V617F (11 cases), MPL (3 cases), and CARL (3 cases) mutations were detected. We found that circulating CD4+CD25highCD127low Tregs were reduced in MF patients as compared with healthy controls (p=0.043), although their suppressive ability was maintained. We also found a lower number of circulating Th17 cells (p=0.0026) in MF patients. This finding was particularly evident in JAK2V617F+(p=0.008) and CARL+(p=0.03) patients. Despite their number was in the normal range, circulating monocytes from MF patients showed reduced expression of the CD86 co-stimulatory molecule. Moreover, as compared with the normal counterparts, immature monocytes-derived DCs from patients maintained low CD14 expression without upregulating the CD80 co-stimulatory molecule expression (p=0.0063). Interestingly, at variance with plasmacytoid DCs, a reduced number of circulating myeloid DCs was observed in MF patients as compared with that of HC (p=0.01). Conclusions: Here we demonstrated that specific crucial subsets of immune cells show quantitative and/or qualitative abnormalities in MF patients. These findings may be useful to better understand the increased susceptibility of these patients to infections, since Th17 cells play a role in bacterial and fungal infections while myeloid DCs regulate Th1 activity. Of note, DCs inhibition might result in increased propensity to infections and compromised immune response to cancer.In addition, since monocytes are DC precursors, alterations in their differentiation pathway may contribute to develop defective immune responses. Disclosures Martinelli: NOVARTIS: Consultancy, Speakers Bureau; BMS: Consultancy, Speakers Bureau; PFIZER: Consultancy; ARIAD: Consultancy.


1988 ◽  
Vol 2 (2) ◽  
pp. 368-371
Author(s):  
Y. Marumoto ◽  
I. Sato ◽  
K. Ikeda

In this study, the effects of culture supernatants on various activities of the monocyte, as a bone-resorbing cell, were compared between peripheral blood leukocyte (PBL) cultures from patients with periodontal disease and those from subjects with a clinically healthy periodontium. We have reported that normal human monocytes in vitro induce the release of calcium from synthetic hydroxyapatite particles and that the activity is enhanced by supernatants from cultures of stimulated or non-stimulated peripheral blood leukocytes. Monocytes from both patients and healthy subjects induced the release of calcium from hydroxyapatite particles (HA) to an equal degree. This activity of monocytes from healthy subjects showed a statistically significant increase by addition of supernatants from stimulated or unstimulated cultures of peripheral blood leukocytes from periodontitis patients. This increase was greater than that seen with supernatants from cells of healthy controls. The Nitro Blue Tetrazolium reduction activity and [3H]-thymidine incorporation of monocytes were also increased by addition of the supernatants from leukocyte cultures from either patients or healthy controls, but no significant difference was noted in the increase. These results suggest that the HA-resorbing activity of monocytes was enhanced by factors from cultured leukocytes. Furthermore, these studies showed that production of these factors by peripheral mononuclear cells from patients with periodontal disease was greater than that seen with cells from normal subjects.


Sign in / Sign up

Export Citation Format

Share Document