Protection Against Neonatal Escherichia coli Diarrhoea in Pigs by Vaccination of Sows with a New Vaccine that Contains Purified Enterotoxic E. coli Virulence Factors F4ac, F4ab, F5 and F6 Fimbrial Antigens and Heat-Labile E. coli Enterotoxin (LT) Toxoid

2005 ◽  
Vol 52 (6) ◽  
pp. 296-300 ◽  
Author(s):  
H.-J. Riising ◽  
M. Murmans ◽  
M. Witvliet
2002 ◽  
Vol 59 (3) ◽  
pp. 271-276
Author(s):  
Valentina Stojanovic ◽  
Miloje Cobeljic

The purpose of this study was to determine the presence of virulence factors (heat-labile, heat-stable enterotoxin, verotoxin, invasiveness, localized, aggregative and diffuse adherence) among E. coli strains isolated from sporadic cases and outbreaks of enterocolitis, which belonged to serogroups characteristic for enteropathogenic E. coli. Serogroup was determined in 57.2% of 622 strains isolated from sporadic cases, and among them virulence factors were detected in 23.6%. Serogroup was also determined in 73.3% of 90 outbreaks isolates tested and virulence factors were detected in 97% of them. The detection rate of virulence factors rarely exceeded 50% among strains belonging to any of serogroup that was determined. The obtained data suggested that the identification of E. coli as a causative agent of enterocolitis by serogroup determination was a reliable method in outbreaks, but not in sporadic cases of this disease.


1994 ◽  
Vol 180 (6) ◽  
pp. 2147-2153 ◽  
Author(s):  
M Pizza ◽  
M R Fontana ◽  
M M Giuliani ◽  
M Domenighini ◽  
C Magagnoli ◽  
...  

Escherichia coli enterotoxin (LT) and the homologous cholera toxin (CT) are A-B toxins that cause travelers' diarrhea and cholera, respectively. So far, experimental live and killed vaccines against these diseases have been developed using only the nontoxic B portion of these toxins. The enzymatically active A subunit has not been used because it is responsible for the toxicity and it is reported to induce a negligible titer of toxin neutralizing antibodies. We used site-directed mutagenesis to inactivate the ADP-ribosyltransferase activity of the A subunit and obtained nontoxic derivatives of LT that elicited a good titer of neutralizing antibodies recognizing the A subunit. These LT mutants and equivalent mutants of CT may be used to improve live and killed vaccines against cholera and enterotoxinogenic E. coli.


2016 ◽  
Vol 473 (21) ◽  
pp. 3923-3936 ◽  
Author(s):  
Dani Zalem ◽  
João P. Ribeiro ◽  
Annabelle Varrot ◽  
Michael Lebens ◽  
Anne Imberty ◽  
...  

The structurally related AB5-type heat-labile enterotoxins of Escherichia coli and Vibrio cholerae are classified into two major types. The type I group includes cholera toxin (CT) and E. coli LT-I, whereas the type II subfamily comprises LT-IIa, LT-IIb and LT-IIc. The carbohydrate-binding specificities of LT-IIa, LT-IIb and LT-IIc are distinctive from those of cholera toxin and E. coli LT-I. Whereas CT and LT-I bind primarily to the GM1 ganglioside, LT-IIa binds to gangliosides GD1a, GD1b and GM1, LT-IIb binds to the GD1a and GT1b gangliosides, and LT-IIc binds to GM1, GM2, GM3 and GD1a. These previous studies of the binding properties of type II B-subunits have been focused on ganglio core chain gangliosides. To further define the carbohydrate binding specificity of LT-IIb B-subunits, we have investigated its binding to a collection of gangliosides and non-acid glycosphingolipids with different core chains. A high-affinity binding of LT-IIb B-subunits to gangliosides with a neolacto core chain, such as Neu5Gcα3- and Neu5Acα3-neolactohexaosylceramide, and Neu5Gcα3- and Neu5Acα3-neolactooctaosylceramide was detected. An LT-IIb-binding ganglioside was isolated from human small intestine and characterized as Neu5Acα3-neolactohexaosylceramide. The crystal structure of the B-subunit of LT-IIb with the pentasaccharide moiety of Neu5Acα3-neolactotetraosylceramide (Neu5Ac-nLT: Neu5Acα3Galβ4GlcNAcβ3Galβ4Glc) was determined providing the first information for a sialic-binding site in this subfamily, with clear differences from that of CT and LT-I.


2001 ◽  
Vol 8 (1) ◽  
pp. 143-149 ◽  
Author(s):  
Ulla Niewerth ◽  
Andreas Frey ◽  
Thomas Voss ◽  
Chantal Le Bouguénec ◽  
Georg Baljer ◽  
...  

ABSTRACT Pathogenic Escherichia coli strains are known to cause edema disease (ED) and postweaning diarrhea (PWD) in piglets. Although the exact mechanisms of pathogenicity that lead to ED-PWD remain to be elucidated, E. coli-borne Shiga-like toxin and adhesion-mediating virulence factors such as F18 adhesin or F4 fimbriae are believed to play a central role in ED-PWD. In light of these observations we investigated whether another E. coliadhesin, the plasmid-encoded AIDA (adhesin involved in diffuse adherence) might also be present in ED-PWD-causing E. coli isolates. For rapid screening for the AIDA system in large numbers of isolates, a multiplex PCR method along with a duplex Western blot procedure was developed. When screening 104 strains obtained from pigs with or without ED-PWD, we observed a high prevalence of the AIDA operon in porcine E. coli isolates, with over 25% of all strains being AIDA positive, and we could demonstrate a significant association of the intact AIDA gene (orfB) with ED-PWD, while defects in orfB were associated with the absence of disease. Although our data hint toward a contribution of AIDA to ED-PWD, further studies will be necessary since the presence of the AIDA genes was also associated with the presence of the Shiga-like toxin and F18 adhesin genes, two reported virulence factors for ED-PWD.


2011 ◽  
Vol 80 (2) ◽  
pp. 493-505 ◽  
Author(s):  
Patrick D. Vigil ◽  
Travis J. Wiles ◽  
Michael D. Engstrom ◽  
Lev Prasov ◽  
Matthew A. Mulvey ◽  
...  

ABSTRACTUropathogenicEscherichia coli(UPEC) is responsible for the majority of uncomplicated urinary tract infections (UTI) and represents the most common bacterial infection in adults. UPEC utilizes a wide range of virulence factors to colonize the host, including the novel repeat-in-toxin (RTX) protein TosA, which is specifically expressed in the host urinary tract and contributes significantly to the virulence and survival of UPEC.tosA, found in strains within the B2 phylogenetic subgroup ofE. coli, serves as a marker for strains that also contain a large number of well-characterized UPEC virulence factors. The presence oftosAin anE. coliisolate predicts successful colonization of the murine model of ascending UTI, regardless of the source of the isolate. Here, a detailed analysis of the function oftosArevealed that this gene is transcriptionally linked to genes encoding a conserved type 1 secretion system similar to other RTX family members. TosA localized to the cell surface and was found to mediate (i) adherence to host cells derived from the upper urinary tract and (ii) survival in disseminated infections and (iii) to enhance lethality during sepsis (as assessed in two different animal models of infection). An experimental vaccine, using purified TosA, protected vaccinated animals against urosepsis. From this work, it was concluded that TosA belongs to a novel group of RTX proteins that mediate adherence and host damage during UTI and urosepsis and could be a novel target for the development of therapeutics to treat ascending UTIs.


2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S907-S907
Author(s):  
Teresa C Fox ◽  
Paul Thuras ◽  
Connie Clabots ◽  
Stephen Porter ◽  
James R Johnson

Abstract Background Extraintestinal Escherichia coli infections are an ever-growing threat, to which specific clonal lineages and virulence factors contribute disproportionately. Despite the gut being the main reservoir for such E. coli strains, relationships between clonal lineages, virulence factors, and fecal colonization patterns are poorly understood. Accordingly, we defined E. coli fecal colonization patterns within households (HHs) and assessed specific lineages and virulence genes (VGs) as predictors of colonization behaviors. Methods Veterans with an E. coli clinical isolate (n = 22: 11 fluoroquinoline [FQ]-resistant, 11 FQ-susceptible) and their HH members provided stool samples on 2–6 occasions each. Stools were screened for total and FQ-resistant E. coli. Distinct E. coli strains were resolved by genomic profiling of 10 colonies/sample. Strains underwent molecular lineage identification, VG detection, and comparison with the veteran’s clinical isolate. Clonal lineages and VGs were assessed (Wilcoxon rank-sum test) as predictors of strains’ (i) predominance within the fecal sample, (ii) persistence across serial fecal samples, (iii) within-HH strain sharing, and (iv) overall within-HH colonization prevalence. Results From the 22 veterans and 46 HH members (27 humans, 19 pets) we recovered 139 unique-by-household fecal E. coli strains. Sixty-four traits were evaluated (16 clonal lineages, 48 VGs). Of these, 44 exhibited n ≥ 5, so could be analyzed statistically. Among these 44 traits, the proportion significantly associated with ≥ 1 outcome variable was 5/6 (83%) for clonal lineages and 18/38 (47%) for VGs. Additionally, fecal strains that matched the veteran’s clinical isolate exhibited significantly greater sharing, persistence, and overall colonization. Conclusion The studied E. coli traits – known for their associations with clinical infections –here were significantly associated with within-HH colonization behavior. These findings support that “virulence factors” may be regarded also (or perhaps best) as “colonization factors,” and “virulent lineages” as “colonizing lineages.” This suggests the possibility that future interventions that disrupt colonization behavior also could prevent E. coli infections. Disclosures All authors: No reported disclosures.


mBio ◽  
2015 ◽  
Vol 6 (1) ◽  
Author(s):  
Sagi Huja ◽  
Yaara Oren ◽  
Eva Trost ◽  
Elzbieta Brzuszkiewicz ◽  
Dvora Biran ◽  
...  

ABSTRACTHere we present an extensive genomic and genetic analysis of Escherichia coli strains of serotype O78 that represent the major cause of avian colisepticemia, an invasive infection caused by avian pathogenicEscherichia coli(APEC) strains. It is associated with high mortality and morbidity, resulting in significant economic consequences for the poultry industry. To understand the genetic basis of the virulence of avian septicemic E. coli, we sequenced the entire genome of a clinical isolate of serotype O78—O78:H19 ST88 isolate 789 (O78-9)—and compared it with three publicly available APEC O78 sequences and one complete genome of APEC serotype O1 strain. Although there was a large variability in genome content between the APEC strains, several genes were conserved, which are potentially critical for colisepticemia. Some of these genes are present in multiple copies per genome or code for gene products with overlapping function, signifying their importance. A systematic deletion of each of these virulence-related genes identified three systems that are conserved in all septicemic strains examined and are critical for serum survival, a prerequisite for septicemia. These are the plasmid-encoded protein, the defective ETT2 (E. colitype 3 secretion system 2) type 3 secretion system ETT2sepsis, and iron uptake systems. Strain O78-9 is the only APEC O78 strain that also carried the regulon coding for yersiniabactin, the iron binding system of theYersiniahigh-pathogenicity island. Interestingly, this system is the only one that cannot be complemented by other iron uptake systems under iron limitation and in serum.IMPORTANCEAvian colisepticemia is a severe systemic disease of birds causing high morbidity and mortality and resulting in severe economic losses. The bacteria associated with avian colisepticemia are highly antibiotic resistant, making antibiotic treatment ineffective, and there is no effective vaccine due to the multitude of serotypes involved. To understand the disease and work out strategies to combat it, we performed an extensive genomic and genetic analysis of Escherichia coli strains of serotype O78, the major cause of the disease. We identified several potential virulence factors, conserved in all the colisepticemic strains examined, and determined their contribution to growth in serum, an absolute requirement for septicemia. These findings raise the possibility that specific vaccines or drugs can be developed against these critical virulence factors to help combat this economically important disease.


2013 ◽  
Vol 305 (11) ◽  
pp. C1185-C1191 ◽  
Author(s):  
Abhisek Ghosal ◽  
Nabendu S. Chatterjee ◽  
Tristan Chou ◽  
Hamid M. Said

Infections with enteric pathogens like enterotoxigenic Escherichia coli ( ETEC) is a major health issue worldwide and while diarrhea is the major problem, prolonged, severe, and dual infections with multiple pathogens may also compromise the nutritional status of the infected individuals. There is almost nothing currently known about the effect of ETEC infection on intestinal absorptions of water-soluble vitamins including thiamin. We examined the effect of ETEC infection on intestinal uptake of the thiamin using as a model the human-derived intestinal epithelial Caco-2 cells. The results showed that infecting confluent Caco-2 monolayers with live ETEC (but not with boiled/killed ETEC or nonpathogenic E. coli) or treatment with bacterial culture supernatant led to a significant inhibition in thiamin uptake. This inhibition appears to be caused by a heat-labile and -secreted ETEC component and is mediated via activation of the epithelial adenylate cyclase system. The inhibition in thiamin uptake by ETEC was associated with a significant reduction in expression of human thiamin transporter-1 and -2 (hTHTR1 and hTHTR2) at the protein and mRNA levels as well as in the activity of the SLC19A2 and SLC19A3 promoters. Dual infection of Caco-2 cells with ETEC and EPEC (enteropathogenic E. coli) led to compounded inhibition in intestinal thiamin uptake. These results show for the first time that infection of human intestinal epithelial cells with ETEC causes a significant inhibition in intestinal thiamin uptake. This inhibition is mediated by a secreted heat-labile toxin and is associated with a decrease in the expression of intestinal thiamin transporters.


2013 ◽  
Vol 57 (9) ◽  
pp. 4512-4517 ◽  
Author(s):  
Etienne Ruppé ◽  
Brandusa Lixandru ◽  
Radu Cojocaru ◽  
Çağrı Büke ◽  
Elisabeth Paramythiotou ◽  
...  

ABSTRACTExtended-spectrum-beta-lactamase (ESBL)-producingEscherichia coli(ESBLE. coli) strains are of major concern because few antibiotics remain active against these bacteria. We investigated the association between the fecal relative abundance (RA) of ESBL-producingE. coli(ESBL-RA) and the occurrence of ESBLE. coliurinary tract infections (UTIs). The first stool samples passed after suspicion of UTI from 310 women with subsequently confirmedE. coliUTIs were sampled and tested for ESBL-RA by culture on selective agar. Predictive values of ESBL-RA for ESBLE. coliUTI were analyzed for women who were not exposed to antibiotics when the stool was passed. ESBLE. coliisolates were characterized for ESBL type, phylogroup, relatedness, and virulence factors. The prevalence of ESBLE. colifecal carriage was 20.3%, with ESBLE. coliUTIs being present in 12.3% of the women. The mean ESBL-RA (95% confidence interval [CI]) was 13-fold higher in women exposed to antibiotics at the time of sampling than in those not exposed (14.3% [range, 5.6% to 36.9%] versus 1.1% [range, 0.32% to 3.6%], respectively;P< 0.001) and 18-fold higher in women with ESBLE. coliUTI than in those with anotherE. coliUTI (10.0% [range, 0.54% to 100%] versus 0.56% [range, 0.15% to 2.1%[, respectively;P< 0.05). An ESBL-RA of <0.1% was 100% predictive of a non-ESBLE. coliUTI. ESBL type, phylogroup, relatedness, and virulence factors were not found to be associated with ESBL-RA. In conclusion, ESBL-RA was linked to the occurrence of ESBLE. coliUTI in women who were not exposed to antibiotics and who had the same clone ofE. coliin urine samples and fecal samples. Especially, a low ESBL-RA appeared to be associated with a low risk of ESBLE. coliinfection.


2005 ◽  
Vol 73 (6) ◽  
pp. 3627-3635 ◽  
Author(s):  
Juliette K. Tinker ◽  
Jarrod L. Erbe ◽  
Randall K. Holmes

ABSTRACT Cholera toxin (CT) is an AB5 toxin responsible for the profuse secretory diarrhea resulting from Vibrio cholerae infection. CT consists of a pentameric, receptor-binding B subunit (CTB) and a monomeric A subunit (CTA) that has latent enzymatic activity. In addition to its enterotoxicity, CT has potent mucosal adjuvant activity and can also function as a carrier molecule with many potential applications in cell biology. In earlier studies, the toxic CTA1 domain was replaced by several other antigenic protein domains to produce holotoxin-like chimeras for use as potential mucosal vaccines. In the present study we utilized the twin arginine translocation (tat) system to produce fluorescent CT chimeras, as well as fluorescent chimeras of Escherichia coli heat-labile toxins LTI and LTIIb. Fusion proteins containing either green fluorescent protein (GFP) or monomeric red fluorescent protein (mRFP) and the A2 domain of CT, LTI, or LTIIb were transported to the periplasm of E. coli by the tat system, and the corresponding B polypeptides of CT, LTI, and LTIIb were transported to the periplasm by the sec system. The fluorescent fusion proteins were shown to assemble spontaneously and efficiently with the corresponding B polypeptides in the periplasm to form chimeric holotoxin-like molecules, and these chimeras bound to and entered cultured cells in a manner similar to native CT, LTI, or LTIIb. The GFP and mRFP derivatives of CT, LT, and LTIIb developed here are useful tools for studies on the cell biology of trafficking of the CT/LT family of bacterial enterotoxins. In addition, these constructs provide proof in principle for the development of novel chimeric CT-like or LT-like vaccine candidates containing CTA2 fusion proteins that cannot be delivered to the periplasm of E. coli by use of the sec secretion pathway.


Sign in / Sign up

Export Citation Format

Share Document