CHARACTERIZATION OF PHOSPHORIC ACID IMPREGNATED ACTIVATED CARBON PRODUCED FROM HONEYDEW PEEL

2015 ◽  
Vol 76 (5) ◽  
Author(s):  
Zalilah Murni Yunus ◽  
Norzila Othman ◽  
R. Hamdan ◽  
N. N. Ruslan

The role of waste materials in producing activated carbon (AC) used in adsorption has been identified as an alternative to substitute commercial expensive wooden starting materials. The present study has chosen honeydew peel as an alternative starting material in activated carbon production because of it’s low cost, availabality and incurs minimal cost for waste management. The production involved chemical impregnation using 20% diluted phosphoric acid (H3PO4) prior to activation. To optimize the activation method, the effect of different activation temperatures (470°C - 550°C) on the physicochemical properties of the AC was studied. The results showed that the AC carbonized at 490°C possessed 942 mg/g iodine number, 997 m2/g surface area SBET and 0.56 ml/g total pore volume. FESEM images showed a high pore development as the activation temperature increased. FTIR indicated the presence of –OH, C=O bond in carboxylic acids, ketones, aldehydes, lactones and ester functional groups on the AC. The experimental results presented the potential use of honeydew peel as a precursor material in the preparation of inexpensive adsorbent for wastewater remediation.

Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 257
Author(s):  
Jie Ren ◽  
Nanwei Chen ◽  
Li Wan ◽  
Guojian Li ◽  
Tao Chen ◽  
...  

In this study, a new method for economical utilization of coffee grounds was developed and tested. The resulting materials were characterized by proximate and elemental analyses, thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and N2 adsorption–desorption at 77 K. The experimental data show bio-oil yields reaching 42.3%. The optimal activated carbon was obtained under vacuum pyrolysis self-activation at an operating temperature of 450 °C, an activation temperature of 600 °C, an activation time of 30 min, and an impregnation ratio with phosphoric acid of 150 wt.%. Under these conditions, the yield of activated carbon reached 27.4% with a BET surface area of 1420 m2·g−1, an average pore size of 2.1 nm, a total pore volume of 0.747 cm3·g−1, and a t-Plot micropore volume of 0.428 cm3·g−1. In addition, the surface of activated carbon looked relatively rough, containing mesopores and micropores with large amounts of corrosion pits.


2012 ◽  
Vol 184-185 ◽  
pp. 1110-1113 ◽  
Author(s):  
Li Fen He ◽  
Qi Xia Liu ◽  
Tao Ji ◽  
Qiang Gao

Various jute-based activated carbon fibers were prepared by using jute fibers as raw materials and phosphoric acid as activating agent. The effects of three main factors such as concentration of activating agent, activation temperature and activation time on the yield and adsorptive properties of active carbon fibers were investigated via orthogonal experiments. The surface physical morphology of jute-based activated carbon fiber was also observed by using Scanning Electron Microscope. Results showed that the optimum conditions were phosphoric acid concentration of 4 mol/L, activation temperature of 600 °C and activation time of 1h. The yield, iodine number and amount of methylene blue adsorption of the active carbon fiber prepared under optimum conditions were 37.99 %, 1208.87 mg/g and 374.65 mg/g, respectively.


Author(s):  
Zahra Abedi ◽  
Desiree Leistenschneider ◽  
Douglas Ivey ◽  
Weixing Chen

Abstract Birnessite type Mn oxide (potassium birnessite hydrate) powder (as-δ-MnO2) with a layered microstructure was prepared via a hydrothermal process. To improve its capacitive performance, the microstructure was thermally modified (annealed) at 400 oC (400-δ-MnO2) in a N2 reducing environment. By removing the hydrated cations (K+) layers inserted between the main layers of birnessite, damaging the microstructure, intercalation/deintercalation of the electrolyte species (Li+1) became more effective. Characterization of as-δ-MnO2 and 400-δ-MnO2 revealed that no phase transformation occurred during the annealing process. The microstructure became less crystalline and the total pore volume increased from 0.20 cm3 g-1 to 0.43 cm3 g-1, while the oxidation state of Mn remained 4+ after annealing the as-δ-MnO2 at 400 oC. The 400-δ-MnO2 sample was then coated on asphaltene derived activated carbon fibers (ACF-400-δ-MnO2) to improve the performance by making use of the high electrical conductivity and capacitive behavior of ACF. Coating the 400-δ-MnO2 sample led to a significant increase in the capacitance (328 F g-1 and 195 F g-1 for ACF-400-δ-MnO2 and 400-δ-MnO2 at 0.4 A g-1, respectively), improved energy and power values (~7 kW kg-1 at ~4.2 Wh kg-1 for ACF-400-δ-MnO2 and 240 W kg-1 at 2.4 Wh kg-1 for 400-δ-MnO2) and improved cycling behavior.


2014 ◽  
Vol 9 (1) ◽  
pp. 166-174 ◽  
Author(s):  
Rajeshwar M. Shrestha ◽  
Margit Varga ◽  
Imre Varga ◽  
Amar P. Yadav ◽  
Bhadra P. Pokharel ◽  
...  

Activated carbons were prepared from Lapsi seed stone by the treatment with H2SO4 and HNO3 for the removal of Ni (II) ions from aqueous solution. Two activated carbon have been prepared from Lapsi seed stones by treating with conc.H2SO4 and a mixture of H2SO4 and HNO3 in the ratio of 1:1 by weight for removal of Ni(II) ions. Chemical characterization of the resultant activated carbons was studied by Fourier Transform Infrared Spectroscopy and Boehm titration which revealed the presence of oxygen containing surface functional groups like carboxyl, lactones and phenols in the carbons. The optimum pH for nickel adsorption is found to be 5. The adsorption data were better fitted with the Langmuir equations than Freundlich adsorption equation to describe the equilibrium isotherms. The maximum adsorption capacity of Ni (II) on the resultant activated carbons was 28.25.8 mg g-1 with H2SO4 and 69.49 mg g-1 with a mixture of H2SO4 and HNO3. The waste material used in the preparation of the activated carbons is inexpensive and readily available. Hence the carbons prepared from Lapsi seed stones can act as potential low cost adsorbents for the removal of Ni (II) from water. DOI: http://dx.doi.org/10.3126/jie.v9i1.10680Journal of the Institute of Engineering, Vol. 9, No. 1, pp. 166–174


2020 ◽  
Vol 9 (1) ◽  
pp. 318-327

Adsorption is a widely used technique for wastewater remediation. The process is effective and economical for the removal of various pollutants from wastewater, including dyes. Moreover, Besides commercial activated carbon, different low-cost materials such as agricultural and industrial wastes are now used as adsorbents. The present review focused on the removal of a teratogenic and carcinogenic dye, orange G (OG) via adsorption using several adsorbents, together with the experimental conditions and their adsorption capacities. Based on the information compiled, various adsorbents have shown promising potential for OG removal.


2017 ◽  
Vol 41 (10) ◽  
pp. 3939-3949 ◽  
Author(s):  
M. Sivachidambaram ◽  
J. Judith Vijaya ◽  
L. John Kennedy ◽  
R. Jothiramalingam ◽  
Hamad A. Al-Lohedan ◽  
...  

Activated carbon is prepared by a two stage process with H3PO4 activating agent using the precursor material Borassus flabellifer flower as an electrode material for supercapacitors.


2020 ◽  
Vol 841 ◽  
pp. 273-277
Author(s):  
Ariany Zulkania ◽  
Muhammad Iqbal ◽  
Syamsumarlin

In this study, two types of adsorbent including activated carbon and bio-sorbent were produced from Palm fiber wastes (PFW), which were activated by phosphoric acid. The influence of adsorbent type and phosphoric acid concentration on methylene blue adsorption was investigated. The most optimum adsorbent was determined based on adsorption capacity and removal percentage of each adsorbent. The result shows that 9.984 mg/g of adsorption capacity and 99.84% of removal percentage were achieved in 90 minutes’ adsorption, which demonstrates the huge potential of bio-sorbent and was chosen to be the most optimum adsorbent based on methylene blue removal. The characterization of bio-sorbent was then investigated using FTIR and SEM. FTIR result shows that bio-sorbent contains cellulose which affected the adsorption process while SEM result shows the cleaner pores and surface compared to bio-sorbent before activation.


2015 ◽  
Vol 11 (1) ◽  
pp. 47
Author(s):  
Hartini Hartini ◽  
Yuniawan Hidayat ◽  
Mudjijono Mudjijono

<p>A composite of γ-alumina and activated carbon made of cassava peels was studied in terms of its pore structures and its properties. The objective of this study was to determine the interaction and structure, as well as the character and pore size of γ-alumina – activated carbon composite.</p><p>Carbon made of cassava peels was activated by H<sub>2</sub>SO<sub>4</sub> and its activities were tested according to the Indonesian Industrial Standards (SII). The addition of activated carbon into γ-alumina made in variations of 10, 20, 30, 40 and 50 % w/w, of the total weight of 10 grams. The composite of γ-alumina - activated carbon was characterized by FTIR, SAA (Surface Area Analyzer), XRD, and determination of Hysteresis Loop composites.</p>The greater addition of activated carbon to γ-alumina causes intermolecular interactions between –O-H groups form rehydrated hydrogen bonds in the composite is greater. The structure of γ-alumina in the composites remain intact although the percentage of activated carbon in composite is large. The total pore volume and surface area using the BET method of the composite decreases with increasing activated carbon percentage. The greater addition of activated carbon to γ-alumina causes size of mesoporous composites decreased with the characteristic of a composite formed is closer to the activated carbon.


2009 ◽  
Vol 59 (12) ◽  
pp. 2387-2394 ◽  
Author(s):  
X. Wang ◽  
N. Zhu ◽  
J. Xu ◽  
B. Yin

An improved method for preparing activated carbons from wet waste activated sludge (WAS) by direct chemical activation was studied in this paper. The effects of processing parameters on iodine adsorption capacity of the product were investigated. Results show that sludge-based activated carbon prepared with KOH had a larger iodine value than those activated with ZnCl2 and KCl. The maximum iodine value was observed at the KOH concentration of 0.50 M. Increasing the impregnation time from 10 to 20 h resulted in a 20% increase in the iodine value. The highest iodine value was obtained at the activation temperature of 600°C and holding time of 1 h. Sludge water content had insignificant effects on the iodine value of products. Raw WAS with a water content of 93.2% can be converted into an activated carbon with a high specific surface area of 737.6 m2 g−1 and iodine value of 864.8 mgg−1 under optimum experimental conditions. Other physical properties such as total pore volume, micropore volume and mean pore diameter of the product were also reported and compared with those of commercial activated carbon.


Sign in / Sign up

Export Citation Format

Share Document