Theory of Frictional Vibration in Wet Clutches Considering Poroelastic Properties of Paper-Based Facing

1996 ◽  
Vol 118 (3) ◽  
pp. 520-526 ◽  
Author(s):  
Y. Hattori ◽  
T. Kato

This paper presents a new theory on frictional vibrations of paper-based friction material considering the interaction between its deformation and the consequent lubricant flow inside it. A frictional vibration model is proposed, in which a poroelastic body saturated by a viscous liquid is introduced, and then a stability criterion is derived on the assumption that vibrations in two directions, tangential and normal, are coupled. Compared with the experiment, it is confirmed that the proposed criterion can predict the stability limit more accurately than the conventional one, which does not take the deformation of the friction material into account and depends only on the slope of friction coefficient versus sliding velocity. Based on the present criterion, influences of material properties on the stability to frictional vibrations are discussed.

2021 ◽  
Vol 88 (5) ◽  
Author(s):  
Arne Ilseng ◽  
Bjørn H. Skallerud ◽  
Bjørn T. Stokke ◽  
Victorien Prot

Abstract The onset of surface instability during diffusion-driven swelling of hydrogels depends on the kinetics of the swelling process. Here, we outline a perturbation analysis framework using a finite difference approach for calculating the stability limit of swelling hydrogel plates with graded material properties accounting for kinetic effects. The framework is implemented as a Python routine which is made freely available. Results obtained for bilayered hydrogel plates illustrate that the onset of instability occurs earlier in time and at a lower global swelling ratio when kinetics is accounted for compared to the homogeneous swelling case. This work presents an accessible calculation tool for stability analysis of swelling gels, providing input for the design of novel hydrogel systems.


2012 ◽  
Vol 531-532 ◽  
pp. 8-12
Author(s):  
M.A. Sai Balaji ◽  
K. Kalaichelvan

Organic fibres (Kevlar/ Arbocel / Acrylic) have good thermal stability, higher surface area and bulk density. The optimization of organic fibres percentage for thermal behaviour is considered using TGA. The temperature raise during brake application will be between 150-4000 C and this temperature zone is very critical to determine the fade characteristics during friction testing. Hence, three different friction composites are developed with the same formulation varying only the Kevlar, Arbocel and Acrylic fibres which are compensated by the inert filler namely the barites and are designated as NA01, NA02 and NA03 respectively. After the fabrication, the TGA test reveals that the composite NA03 has minimum weight loss. The friction coefficient test rig is then used to test the friction material as per SAE J661a standards. The results prove that the brake pad with minimum weight loss during TGA has higher friction stability. Thus, we can correlate the thermal stability with the stability of friction.


Author(s):  
Marta J. Reith ◽  
Daniel Bachrathy ◽  
Gabor Stepan

Multi-cutter turning systems bear huge potential in increasing cutting performance. In this study we show that the stable parameter region can be extended by the optimal tuning of system parameters. The optimal parameter regions can be identified by means of stability charts. Since the stability boundaries are highly sensitive to the dynamical parameters of the machine tool, the reliable exploitation of the so-called stability pockets is limited. Still, the lower envelope of the stability lobes is an appropriate upper boundary function for optimization purposes with an objective function taken for maximal material removal rates. This lower envelope is computed by the Robust Stability Computation method presented in the paper. It is shown in this study, that according to theoretical results obtained for optimally tuned cutters, the safe stable machining parameter region can significantly be extended, which has also been validated by machining tests.


1991 ◽  
Vol 156 (1) ◽  
pp. 63-80 ◽  
Author(s):  
C. Shingyoji ◽  
I. R. Gibbons ◽  
A. Murakami ◽  
K. Takahashi

The heads of live spermatozoa of the sea urchin Hemicentrotus pulcherrimus were held by suction in the tip of a micropipette mounted on a piezoelectric device and vibrated either laterally or axially with respect to the head axis. Within certain ranges of frequency and amplitude, lateral vibration of the pipette brought about a stable rhythmic beating of the flagella in the plane of vibration, with the beat frequency synchronized to the frequency of vibration [Gibbons et al. (1987), Nature 325, 351–352]. The sperm flagella, with an average natural beat frequency of 48 Hz, showed stable beating synchronized to the pipette vibration over a range of 35–90 Hz when the amplitude of vibration was about 20 microns or greater. Vibration frequencies below this range caused instability of the beat plane, often associated with irregularities in beat frequency. Frequencies above about 90 Hz caused irregular asymmetrical flagellar beating with a marked decrease in amplitude of the propagated bends and a skewing of the flagellar axis towards one side; the flagella often stopped in a cane shape. In flagella that were beating stably under imposed vibration, the wavelength was reduced at higher frequencies and increased at lower frequencies. When the beat frequency was equal to or lower than the natural beat frequency, the apparent time-averaged sliding velocity of axonemal microtubules, obtained as twice the product of frequency and bend angle, decreased with beat frequency in both the proximal and distal regions of the flagella. However, at vibration frequencies above the natural beat frequency, the sliding velocity increased with frequency only in the proximal region of the flagellum and remained essentially unchanged in more distal regions. This apparent limit to the velocity of sliding in the distal region may represent an inherent limit in the intrinsic velocity of active sliding, while the faster sliding observed in the proximal region may be a result of passive sliding or elastic distortion of the microtubules induced by the additional energy supplied by the vibrating pipette. Axial vibration with frequencies either close to or twice the natural beat frequency induced cyclic changes in the waveform, compressing and expanding the bends in the proximal region, but did not affect bends in the distal region or alter the beat frequency.


2013 ◽  
Vol 427-429 ◽  
pp. 257-261
Author(s):  
Li Xia Sun ◽  
Jian Wei Yao ◽  
Fu Guo Hou ◽  
Xin Zhao

In order to investigate self-excited vibration mechanism of wheel-rail lateral contact system, a two DOF elasticity position wheelset lateral vibration model is established which considers the dry friction; the mechanism of the wheelset lateral self-excited vibration is investigated from the energy point of view. It shows that: the bifurcation diagram of this wheel-rail lateral contact system has a supercritical Hopf bifurcation. The energy of self-excited vibration derives from a part of traction energy; the creep rate in the wheel-rail system act as a feedback mechanism in the wheelset lateral self-excited vibration system. The stability of the wheelset self-excited vibration system depends mainly on the total energy removed from and imported into the system.


2018 ◽  
Vol 1150 ◽  
pp. 22-42
Author(s):  
Dinesh Shinde ◽  
Kishore N. Mistry ◽  
Suyog Jhavar ◽  
Sunil Pathak

The peculiar feature of friction materials to absorb the kinetic energy of rotating wheels of an automobile to control the speed makes them remarkable in automobile field. The regulation of speed cannot be achieved with the use of single phase material as a friction material. Consequently, the friction material should be comprised of composite materials which consist of several ingredients. Incidentally, the friction materials were formulated with friction modifier, binders, fillers and reinforcements. Due to its pleasant physical properties, asbestos was being used as a filler. Past few decades, it is found that asbestos causes dangerous cancer to its inhaler, which provides a scope its replacement. Several attempts have been made to find an alternative to the hazardous asbestos. The efforts made by different researchers for the impact of every composition of composite friction material in the field are reviewed and studied for their effect on the properties of friction material. Surface morphological studies of different friction material are compared to interpret the concept of surface wear and its correlation with material properties.


1983 ◽  
Vol 20 (4) ◽  
pp. 661-672 ◽  
Author(s):  
R. K. H. Ching ◽  
D. G. Fredlund

Several commonly encountered problems associated with the limit equilibrium methods of slices are discussed. These problems are primarily related to the assumptions used to render the inherently indeterminate analysis determinate. When these problems occur in the stability computations, unreasonable solutions are often obtained. It appears that problems occur mainly in situations where the assumption to render the analysis determinate seriously departs from realistic soil conditions. These problems should not, in general, discourage the use of the method of slices. Example problems are presented to illustrate these difficulties and suggestions are proposed to resolve these problems. Keywords: slope stability, limit equilibrium, method of slices, factor of safety, side force function.


Author(s):  
Y. P. Razi ◽  
M. Mojtabi ◽  
K. Maliwan ◽  
M. C. Charrier-Mojtabi ◽  
A. Mojtabi

This paper concerns the thermal stability analysis of porous layer saturated by a binary fluid under the influence of mechanical vibration. The linear stability analysis of this thermal system leads us to study the following damped coupled Mathieu equations: BH¨+B(π2+k2)+1H˙+(π2+k2)−k2k2+π2RaT(1+Rsinω*t*)H=k2k2+π2(NRaT)(1+Rsinω*t*)Fε*BF¨+Bπ2+k2Le+ε*F˙+π2+k2Le−k2k2+π2NRaT(1+Rsinω*t*)F=k2k2+π2RaT(1+Rsinω*t*)H where RaT is thermal Rayleigh number, R is acceleration ratio (bω2/g), Le is the Lewis number, k is the dimensionless wave-number, ε* is normalized porosity and N is the buoyancy ratio (H and F are perturbations of temperature and concentration fields). In the follow up, the non-linear behavior of the problem is studied via a generalization of the Lorenz model (five coupled non-linear differential equations with periodic coefficients). In the presence or absence of gravity, the stability limit for the onset of stationary as well as Hopf bifurcations is determined.


1999 ◽  
Vol 122 (4) ◽  
pp. 849-855 ◽  
Author(s):  
Kwangjin Lee

Thermoelastic instability in automotive drum brake systems is investigated using a finite layer model with one-sided frictional heating. With realistic material properties of automotive brakes, the stability behavior of the one-sided heating mode is similar to that of the antisymmetric mode of two-sided heating but the critical speed of the former is higher than that of the latter. The effects of the friction coefficient and brake material properties on the critical speeds are examined and the most influential properties are found to be the coefficient of friction and the thermal expansion coefficient of drum materials. Vehicle tests were performed to observe the critical speeds of the drum brake systems with aluminum drum materials. Direct comparisons are made between the calculation and measurement for the critical speed and hot spot spacing. Good agreement is achieved when the critical speeds are calculated using the temperature-dependent friction material properties and the reduced coefficient of friction to account for the effect of intermittent contact. [S0742-4787(00)01503-4]


1999 ◽  
Author(s):  
Pouya Amili ◽  
Yanis C. Yortsos

Abstract We study the linear stability of a two-phase heat pipe zone (vapor-liquid counterflow) in a porous medium, overlying a superheated vapor zone. The competing effects of gravity, condensation and heat transfer on the stability of a planar base state are analyzed in the linear stability limit. The rate of growth of unstable disturbances is expressed in terms of the wave number of the disturbance, and dimensionless numbers, such as the Rayleigh number, a dimensionless heat flux and other parameters. A critical Rayleigh number is identified and shown to be different than in natural convection under single phase conditions. The results find applications to geothermal systems, to enhanced oil recovery using steam injection, as well as to the conditions of the proposed Yucca Mountain nuclear waste repository. This study complements recent work of the stability of boiling by Ramesh and Torrance (1993).


Sign in / Sign up

Export Citation Format

Share Document