On the Deployment of Multistable Kresling Origami-Inspired Structures

Author(s):  
Narayanan Kidambi ◽  
K. W. Wang

Abstract Origami designs have attracted significant attention from researchers seeking to develop new types of deployable structures due to their ability to undergo large and complex yet predictable shape changes. The Kresling pattern, which is based on a natural accumulation of folds and creases during the twist-buckling of a thin-walled cylinder, offers a great example for the design of deployable systems that expand uniaxially into tubes or booms. However, much remains to be understood regarding the characteristics of Kresling-based deployable systems, and their dynamics during the deployment process remain largely unexplored. Hence this research investigates the deployment of Kresling origami-inspired structures, employing a full six-degree-of-freedom truss-based model to study their dynamics under different conditions. Results show that tuning the initial rotation angle of a structure gives rise to several qualitatively distinct mechanical properties and stability characteristics, each of which has different implications for the design of the deployable systems. Dynamic analyses reveal the robustness of Kresling structures to out-of-axis perturbations while remaining compliant in the axial direction. These findings suggest that Kresling-based designs can form the basis for the development of new types of deployable structures and systems with tunable performance.

2018 ◽  
Vol 920 ◽  
pp. 211-216
Author(s):  
Heng Li ◽  
Heng Yang ◽  
Jun Ma ◽  
Zhen Yong Feng

Titanium tubular materials with high strength, long-lifetime and light weight has attracted wide attention in many industries such as aerospace, energy and chemistry. While, titanium tubular materials are subjected to complex multiple thermal-mechanical processing, and generally present pronounced anisotropy/asymmetry properties, which greatly affects the formability and the performance of the tubular materials. Meanwhile, thin-walled tubular materials are difficult-to-characterizing materials. Thus, how to accurately and comprehensively characterize the mechanical properties is the most vital issue and precondition for innovative design of the fabricating and forming of the tubular materials and components. However, the hollow structure of tubular materials, especially thin-walled geometry, makes the testing and characterizing of the mechanical properties a challenge. In this research, a general testing and characterizing framework is developed to determine anisotropic and asymmetrical mechanical properties for tubular materials. In the framework, Knoop microhardness is first employed to qualitatively identify anisotropy and asymmetry of titanium tubes. The basic tension and compression mechanical properties along axial direction are determined by mean of uniaxial tensile and compressive tests. Combined with tension and compression tests, the viscoplastic self-consistent crystal plasticity (VPSC) is calibrated to complement the deformation behaviors along other different loading directions. Taking Ti-3Al-2.5V titanium tube and commercial pure titanium (CP-Ti) tube as the case materials, the application of the above framework for the mandrel bending demonstrates the feasibility of the proposed methodology.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3817
Author(s):  
Yingjie Huang ◽  
Wenke Zha ◽  
Yingying Xue ◽  
Zimu Shi

This study focuses on the uniaxial compressive behaviour of thin-walled Al alloy tubes filled with pyramidal lattice material. The mechanical properties of an empty tube, Al pyramidal lattice material, and pyramidal lattice material-filled tube were investigated. The results show that the pyramidal lattice material-filled tubes are stronger and provide greater energy absorption on account of the interaction between the pyramidal lattice material and the surrounding tube.


An analysis of compound rotations, such as occur in eulerian cradles, is presented in terms of a calculus of rotation axes, without reference to the associated coordinate transformations. The general case of three rotation shafts mounted on one another, with any relation between them at datum zero, is presented. The problem and its solution may be represented entirely in terms of a plane octagon in which four sides have directions that are instrumental constants and the other four sides have lengths that are instrumental constants. When the first four sides are given lengths that express both the rotation angle and the axial direction of the required rotation, then the remaining four sides have directions that directly express the rotations in the drive shafts, that will generate the required rotation. Analytic expressions are given for the shaft setting angles in the general case. If the first and third axes are parallel and the intermediate one perpendicular to these at datum zero (as in the four-circle diffractometer) then these reduce to θ 1 = arctan ( μ, σ ) + [arctan ( λ , v ) - ψ -½8π], θ 2 = 2 s arcsin ( λ 2 + v 2 )½, θ 3 = ( μ, σ ) - [arctan ( λ , v ) - ψ - ½8π], s = ± 1, 0 ≤ arcsin ( λ 2 + v 2)½ ≤ ½π, in which λ, μ, v and σ are the four components of a rotation vector constructed such that λ, μ and v are the direction cosines of the rotation axis multiplied by sin½ θ for a rotation angle θ and σ is cos½ θ . ψ is a constant determined by the choice of directions to which λ and v are measured. The results for the general case are also expressed in terms of more conventional variables.


2021 ◽  
Vol 316 ◽  
pp. 233-239
Author(s):  
Viktor N. Pustovoit ◽  
Yuri V. Dolgachev ◽  
Yu.M. Dombrovskii

During heat treatment of machine parts and tools, besides the usual task of ensuring a high complex of mechanical and operational properties, there is a problem of distortion of products in the process of heat treatment and the need for editing operations (which are carried out manually and require significant labor costs). The known methods do not solve the problem of removing distortion for thin-walled parts of the ring shape completely. This paper shows the technical possibility of using the energy of a constant magnetic field for the "internal" straightening of products during heat treatment in the temperature range of super-plasticity of transformation. The use of special equipment makes it possible to eliminate virtually the distortion of thin-walled parts of the ring shape and to improve their mechanical properties.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Chunguang Wang ◽  
Weiping Tian ◽  
Min Tang

In order to study the mechanical properties and failure mechanism of the axial braided C/C composites, the microscopic and macroscopic mechanical properties of the composite were investigated. In view of the size effect of the samples, the properties of the samples with different thickness were tested. The strain during loading was measured by optical method, and the failure morphology was observed by SEM. The changing characteristics of stress-strain curve were analyzed, and the failure characteristics of materials and failure mechanism under various loads were obtained. It was found that brittle fracture was observed during the tensile process of axial braided C/C composites, and the main failure forms were fiber rod pulling and partial fiber rod breaking in the axial direction. Radial failure was mainly in the form of fiber bundle fracture and crack stratification propagation. When compressed, the material exhibited pseudoplastic characteristics. The radial compression sample was cut along a 45-degree bevel. The axial compression curve was in the form of double fold, the axial fiber rod was unstable, and the transverse fiber bundle was cut. During in-plane shearing, the axial fracture was brittle and the fiber rod was cut. The radial direction showed the fracture and pulling of the fiber bundle, and the material had the characteristics of pseudoplasticity. The research methods and results in this paper could provide important references for the optimization and rational application of C/C composite materials.


2021 ◽  
pp. 49-54
Author(s):  
V.A. Ogorodov

Different ways of fixing of stepped thin-walled cylinders during honing are analyzed. The conditions for increasing the accuracy of hole machining are determined on the basis of unevenness of cylinder deformations from clamping forces and radial forces simulating cutting forces. The studies used the finite element method and the DEFORM-3D V6.1 software package. Keywords: honing, stepped thin-walled cylinder, hole, accuracy, fixing method, deformation, unevenness, DEFORM-3D V6.1 software package. [email protected]


Author(s):  
Jiaqiang Li ◽  
Yao Chen ◽  
Xiaodong Feng ◽  
Jian Feng ◽  
Pooya Sareh

Origami structures have been widely used in various engineering fields due to their desirable properties such as geometric transformability and high specific energy absorption. Based on the Kresling origami pattern, this study proposes a type of thin-walled origami tube the structural configuration of which is found by a mixed-integer linear programming model. Using finite element analysis, a reasonable configuration of a thin-walled tube with the Kresling pattern is firstly analyzed. Then, the influences of different material properties, the rotation angle of the upper and lower sections of the tube unit, and cross-sectional shapes on the energy absorption behavior of the thin-walled tubes under axial compression are evaluated. The results show that the symmetric thin-walled tube with the Kresling pattern is a reasonable choice for energy absorption purposes. Compared with thin-walled prismatic tubes, the thin-walled tube with the Kresling pattern substantially reduces the initial peak force and the average crushing force, without significantly reducing its energy absorption capacity; moreover, it enters the plastic energy dissipation stage ahead of time, giving it a superior energy absorption performance. Besides, the material properties, rotation angle, and cross-sectional shape have considerable influences on its energy absorption performance. The results provide a basis for the application of the Kresling origami pattern in the design of thin-walled energy-absorbingstructures.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
José M. Zea Pérez ◽  
Jorge Corona-Castuera ◽  
Carlos Poblano-Salas ◽  
John Henao ◽  
Arturo Hernández Hernández

Purpose The purpose of this paper is to study the effects of printing strategies and processing parameters on wall thickness, microhardness and compression strength of Inconel 718 superalloy thin-walled honeycomb lattice structures manufactured by laser powder bed fusion (L-PBF). Design/methodology/approach Two printing contour strategies were applied for producing thin-walled honeycomb lattice structures in which the laser power, contour path, scanning speed and beam offset were systematically modified. The specimens were analyzed by optical microscopy for dimensional accuracy. Vickers hardness and quasi-static uniaxial compression tests were performed on the specimens with the least difference between the design wall thickness and the as built one to evaluate their mechanical properties and compare them with the counterparts obtained by using standard print strategies. Findings The contour printing strategies and process parameters have a significant influence on reducing the fabrication time of thin-walled honeycomb lattice structures (up to 50%) and can lead to improve the manufacturability and dimensional accuracy. Also, an increase in the young modulus up to 0.8 times and improvement in the energy absorption up to 48% with respect to those produced by following a standard strategy was observed. Originality/value This study showed that printing contour strategies can be used for faster fabrication of thin-walled lattice honeycomb structures with similar mechanical properties than those obtained by using a default printing strategy.


2021 ◽  
Vol 871 ◽  
pp. 3-8
Author(s):  
Rui Zhi Jian ◽  
Shang Cheng Zhou ◽  
Yun Fei Xue

To improve the mechanical properties of a sintered WHA using high entropy alloy as the matrix (W-HEA), investigations were carried out to apply deformation strengthening method of hot swaging on the W-HEA. The W-HEA samples were swaged around 1300°C with the 10%, 15% and 20% of reduction in area. The results show that the strength and hardness of the W-HEA composite increased with the increasing degree of deformation. And the aspect ratio of tungsten grains increases along the axial direction in the swaged alloys. The hardness of W-HEA with a 20% reduction in area reaches 448 HV, and the dynamic compression yield strength is about 1911 MPa. After hot swaging, the hardness and strength of the W-HEA are greatly improved compared with the sintered W-HEA.


Sign in / Sign up

Export Citation Format

Share Document