Innovative Minimally Intrusive Sensor Technology Development for Versatile Affordable Advanced Turbine Engine Combustors

Author(s):  
Neil Goldstein ◽  
Carlos A. Arana ◽  
Fritz Bien ◽  
Jamine Lee ◽  
John Gruninger ◽  
...  

The feasibility of an innovative minimally intrusive sensor for monitoring the hot gas stream at the turbine inlet in high performance aircraft gas turbine engines was demonstrated. The sensor uses passive fiber-optical probes and a remote readout device to collect and analyze the spatially resolved spectral signature of the hot gas in the combustor/turbine flowpaths. Advanced information processing techniques are used to extract the average temperature, temperature pattern factor, and chemical composition on a sub-second time scale. Temperatures and flame composition were measured in a variety of combustion systems including a high pressure, high temperature combustion cell. Algorithms for real-time temperature measurements were developed and demonstrated. This approach should provide a real-time temperature profile, temperature pattern factor, and chemical species sensing capability for multi-point monitoring of high temperature and high pressure flow at the combustor exit with application as an engine development diagnostic tool, and ultimately, as a real-time active control component for high performance gas turbines.

Author(s):  
Cynthia K. McCurry ◽  
Robert R. Romanosky

This paper describes the experiences leading to successful sampling of hot, contaminated, coal-derived gas streams for alkali constituents using advanced spectrometers. This activity was integrated with a multi-phase, combustion test program which addressed the use of minimally treated, coal-derived fuel gas in gas turbines. Alkali contaminants in coal-derived fuels are a source of concern, as they may induce corrosion of and deposition on turbine components. Real-time measurement of alkali concentrations in gasifier output fuel gas streams is important in evaluating these effects on turbine performance. An automated, dual-channel, flame atomic emission spectrometer was used to obtain on-line measurements of total sodium and potassium mass loadings (vapors and particles) in two process streams at the General Electric fixed-bed coal gasifier and turbine combustor simulator facility in Schenectady, New York. Alkali measurements were taken on (1) slipstreams of high temperature, high pressure, minimally clean, low-Btu fuel gas containing entrained particles from the gasifier and (2) a slipstream of the exhaust gas from the combustor/turbine simulator. Alkali detection limits for the analyzer were found to be on the order of one part per billion. Providing a representative sample to the alkali analyzer at the limited flows required by the instrument was a major challenge of this activity. Several approaches and sampling hardware configurations were utilized with varying degrees of success during this testing campaign. The resulting information formed the basis for a second generation sampling system which has recently been successfully utilized to measure alkali concentrations in slipstreams from the described fixed-bed coal gasifier and turbine combustor simulator.


1978 ◽  
Author(s):  
C. F. McDonald

With soaring fuel costs and diminishing clean fuel availability, the efficiency of the industrial gas turbine must be improved by utilizing the exhaust waste heat by either incorporating a recuperator or by co-generation, or both. In the future, gas turbines for power generation should be capable of operation on fuels hitherto not exploited in this prime-mover, i.e., coal and nuclear fuel. The recuperative gas turbine can be used for open-cycle, indirect cycle, and closed-cycle applications, the latter now receiving renewed attention because of its adaptability to both fossil (coal) and nuclear (high temperature gas-cooled reactor) heat sources. All of these prime-movers require a viable high temperature heat exchanger for high plant efficiency. In this paper, emphasis is placed on the increasingly important role of the recuperator and the complete spectrum of recuperative gas turbine applications is surveyed, from lightweight propulsion engines, through vehicular and industrial prime-movers, to the large utility size nuclear closed-cycle gas turbine. For each application, the appropriate design criteria, types of recuperator construction (plate-fin or tubular etc.), and heat exchanger material (metal or ceramic) are briefly discussed.


2012 ◽  
Vol 27 (01) ◽  
pp. 1350004
Author(s):  
XIANFENG WEI ◽  
YONG HAN ◽  
LIU LIU ◽  
XINPING LONG

To explore the practicability of C 60 synthesis under extreme conditions (high pressure and high temperature), trinitrotoluene (TNT), trinitramine (RDX) and graphite mixtures of different proportions were detonated in a vacuum container, and the detonation products were collected for detecting. The results of mass spectroscopy, high performance liquid chromatography showed significant signals of C 60, which proved that C 60 could be synthesized by detonating the mixture of TNT and graphite (in 6:4 and 7:3 mass ratio, respectively), the detonation pressure and temperature were calculated around 13 GPa and 2000 K, respectively. Both experiment results and theoretical analysis showed the importance of detonation pressure and cooling temperature in detonation synthesis of C 60.


Author(s):  
Alexander Stankowski

Hot gas path components of modern Industrial Gas Turbines (IGT) are exposed to extreme thermal, mechanical and chemical loading that ultimately leads to their deterioration. Modern GT designs provide for safe operation for a certain operation period. Higher firing temperatures and changing machine loads as a result of the deregulated markets call for highly sophisticated part designs and the use of cost-intensive superalloys. As the lifetime of critical parts is not infinite, they are reconditioned periodically or replaced to regain efficiency losses and to mitigate the risk of unscheduled outages due to hot gas path (HGP) failures. This paper presents advanced thermochemical preparation treatments that form the basis for the subsequent structural repairs, such as high temperature brazing. Before executing any repair step, coated components must be stripped of the consumed and degenerated coatings. Not all of the many techniques that are commonly used can guarantee reproducible and complete removal without damaging the substrate. Recently improved thermochemical techniques, such as a combination of advanced Chemical Stripping and Salt Bath Cleaning, enables the OEM to obtain clean components at low unit costs and for short processing times. In previous approaches, CrF2- and PTFE-based processes were used to clean surfaces and, principally, cracks from oxide scales before welding or brazing was carried out. These preparation techniques were indispensable for reworking superalloys, which cannot be cleaned sufficiently using conventional methods such as exposure under reducing atmospheres at high temperatures. Today, the high versatility of the “Dynamic Subatmospheric Fluoride Ion Cleaning” process (FIC) enables the OEM to run precisely tailored processes, allowing complete freedom to adjust the chemical activity of the gas phase and in so doing fulfil the specific conditions for any superalloy being reworked, even taking into account the varying grade of degradation sustained during service exposure. Weld repairs on superalloys are very sensitive to hot cracking, and high temperature brazing has established itself as a successful method for overcoming this problem. Furthermore, the intensively FIC cleaned surfaces can be regarded as the most important condition to enable a high quality bonding. Other key advantages of braze repairs are the uniform heat input that is possible, the high shape tolerance and the fact that multiple cracks can be simultaneously repaired. In addition, the brazing heat treatment allows controlled adjustment of the microstructural properties. Besides the economic benefits of the treatment, the brazed parts show excellent results in respect of their mechanical integrity. A schematic presentation of the repair sequence described in this paper is shown in the appendix (Fig. 17).


2013 ◽  
Vol 744 ◽  
pp. 53-57 ◽  
Author(s):  
Lian Xin Gao ◽  
Kun Zhong Sun ◽  
Yi Zhang

The application of API threaded connections for casing and tubing is limited due to their imperfect sealing ability and weak connecting strength. To overcome these prominent drawbacks of API threaded connections, new WSP series of premium threaded connections are developed by Wuxi Seamless Oil Pipe Corporation for HTHP(High temperature, High pressure) wells, deep wells, steam injection wells, highly deviated and long horizontal wells, etc. Characteristics and application ranges of eight kinds of these high performance premium threaded connections are compared and analyzed thoroughly in this paper. The comparison results are not only a good reference for technicians to design new connections, but a technical proof for users to choose the proper connections in different applications.


2009 ◽  
Author(s):  
Girish Dinkar Sarap ◽  
Manoj Sivanandan ◽  
Sandip Prabhakar Patil ◽  
Abhimanyu Deshpande

2021 ◽  
Author(s):  
Meiling Jia ◽  
Chenghan Yi ◽  
Yankun Han ◽  
Xin Li ◽  
Guoliang Xu ◽  
...  

Abstract Thin, lightweight, and flexible textile pressure sensors with the ability to precisely detect the full range of faint pressure (< 100 Pa), low pressure (in the range of KPa) and high pressure (in the range of MPa) are in significant demand to meet the requirements for applications in daily activities and more meaningfully in some harsh environments, such as high temperature and high pressure. However, it is still a major challenge to fulfill these requirements simultaneously in a single pressure sensor. Herein, a high-performance pressure sensor enabled by polyimide fiber fabric with functionalized carbon-nanotube (PI/FCNT) is obtained via a facile electrophoretic deposition (EPD) approach. High-density FCNT is evenly wrapped and chemically bonded to the fiber surface during the EPD process, forming a conductive hierarchical fiber/FCNT matrix. Benefiting from the abundant yet firm contacting points, point-to-point contacting mode, and high elastic modulus of both PI and CNT, the proposed PI/FCNT pressure sensor exhibits ultra-high sensitivity (3.57 MPa− 1), ultra-wide linearity (3.24 MPa), exceptionally broad sensing range (~ 45 MPa), and long-term stability (> 4000 cycles). Furthermore, under a high working temperature of 200 ºC, the proposed sensor device still shows an ultra-high sensitivity of 2.64 MPa− 1 within a wide linear range of 7.2 MPa, attributing to its intrinsic high-temperature-resistant properties of PI and CNT. Thanks to these merits, the proposed PI/FCNT(EPD) pressure sensor could serve as an E-skin device to monitor the human physiological information, precisely detect tiny and extremely high pressure, and can be integrated into an intelligent mechanical hand to detect the contact force under high-temperature (> 300 ºC), endowing it with high applicability in the fields of real-time health monitoring, intelligent robots, and harsh environments.


Author(s):  
V. Zakkay ◽  
E. A. M. Gbordzoe ◽  
K. M. Sellakumar ◽  
C. Q. Lu

Three hot gas clean up units namely, the Screenless Granular Bed Filter (GBF), Ceramic Cross-flow Filter (CXF) and High Temperature, High Pressure Electrostatic Precipitator (ESP) designed for PFBC combined cycle power applications were tested at the New York University (NYU) DOE-PFBC facility located at Westbury, New York using a 780 mm ID pressurized fluidized bed combustor. The combustor was operated up to 10 atma and 870 °C. With the exception of the ESP whose performance was hampered by persistent electrode bushing failure, the particulate capturing efficiencies of the GBF and the CXF were predominantly in the upper 90 % range. The dust loading leaving the filters was consistently lower than the NSPS particulate emission limit. The results also indicate that the filter exit gas stream may meet the gas turbine particulate tolerance limit. None of the three high temperature, high pressure (HTHP) gas clean up units tested emerges as a favorite for use in cleaning PFBC exhaust stream because, each has mechanical design as well as operational flaws which could be corrected. The Cross-flow filter suffered from filter element cracking or delamination or gasket failure during its short test program. The backpulse cleaning system also needs to be optimized. The GBF is susceptible to media bubbling and granule flow problems through its lower seal leg. The Electrostatic Precipitator tested at NYU failed because its electrode bushings cracked due to overheating and could not hold their designed voltage. Further HTHP filter testing at the sub-pilot plant scale is necessary to optimize filter design and develop effective operational procedures for the hot gas clean up systems that will make them viable for commercial PFBC application.


Author(s):  
J. Kruschik

The hot gas double axial valve is a newly developed shut-off valve for high temperature and high pressure helium, which can be used in the new generation of helium cooled nuclear plants, including the modular reactor. It is the safety shut-off valve in the secondary circuit after the heat-exchanger. At first it will be used in the German project PNP (nuclear process heat for the gasification of coal), but it can also be used for the other high temperature systems such as the closed cycle nuclear gas turbine, chemical plants or for industrial processes. Its state of development, test results, and the present prototype design are discussed. A further concept for a coaxial valve will be shown, which may be of interest for certain types of modular reactors and also for closed cycle nuclear gas turbines.


1973 ◽  
Vol 95 (4) ◽  
pp. 1076-1082
Author(s):  
H. D. Linhardt

Single and two shaft hot gas expander compression systems will soon replace conventional multitrain, low speed equipment due to significant economic and process advantages. The single train concept is a direct result of the recent advances in high pressure ratio compressor, high performance radial inflow turbine and high performance steam turbine technology. The application and custom engineering of single train compression systems is discussed, whereby emphasis is placed on performance and reliability.


Sign in / Sign up

Export Citation Format

Share Document