Interactive Buckling of Sandwich Plates Under Compression

Author(s):  
Srinivasan Sridharan ◽  
Kim Sunjung ◽  
Sami I. El-Sayed

Abstract Compressive behavior of two classes of “sandwich” structures is investigated. These structures have for their principal load bearing components two relatively stiff parallel horizontal sheets which are interconnected in one of the following ways: (i) by a highly compliant core material such as foam, or (ii) a set of discrete stiffeners connecting the parallel (top and bottom) sheets. In case (i), the structure can buckle in either a local mode in which the core and the facing bend together or a wrinkling mode in which the facing sheet undergoes severe bending with the core subjected to deformation in the transverse plane. It is found that these plates have neither post buckling stiffness nor do they exhibit any imperfection-sensitivity. In case (ii) the point of principal interest is the interaction of local and overall buckling. For the case of coincident local and overall buckling, it is found that 30% reduction in the maximum load can occur for modest levels of imperfections as a result of modal interaction.


1976 ◽  
Vol 27 (4) ◽  
pp. 277-291 ◽  
Author(s):  
W C Fok ◽  
J Rhodes ◽  
A C Walker

SummaryThis paper reports on an investigation of the effect of local elastic buckling of stiffener outstands on the overall behaviour of stiffened plates. A simplified mathematical model has been developed, based on the post-buckling analysis of the stiffener, and gives a simple expression which indicates that, for the plate geometry investigated, the maximum load carried varies asymptotically between the local critical load of the stiffener and a reduced Euler load. Also, there is a marked imperfection sensitivity arising from the interaction of the local and overall buckling modes. Experiments were carried out to confirm the analytical prediction for the elastic buckling behaviour of the stiffened plates. The models were constructed of Araldite, to allow large deformation within the elastic strain range. Experimental results showed very good agreement with the theory.



2000 ◽  
Author(s):  
Bhavani V. Sankar ◽  
Manickam Narayanan ◽  
Abhinav Sharma

Abstract Nonlinear finite element analysis was used to simulate compression tests on sandwich composites containing debonded face sheets. The core was modeled as an elastic-perfectly-plastic material, and the face-sheet as elastic isotropic. The effects of core plasticity, face-sheet and core thickness, and debond length on the maximum load the beam can carry were studied. The results indicate that the core plasticity is an important factor that determines the maximum load.



The paper presents a procedure for the localized analysis of compound bifurcations. A full range of phenomena are embraced, including loci of equilibria, secondary bifurcation, and imperfection sensitivity, the scheme showing how to generate the appropriate lowest-order non-trivial equations of interest. A number of aids to solution are presented, including the concepts of generalized imperfection and generalized loading parameter. The scheme is developed by using a general non-diagonalized format suitable for numerical analysis, but the special diagonalized form can also be used to good effect. This is illustrated in the application to the interactive buckling of stiffened plates and shells, when local and overall buckling occur simultaneously or nearly so. The modelling relies heavily on the elimination-of-passive-coordinates routine of the general scheme. The study shows that the parabolic umbilic catastrophe is the key phenomenon for most such problems. Finally, the branching analysis is fully illustrated for semi-symmetric branching, where one of the contributing bifurcations is symmetric and the other is asymmetric. In all, ten different loci are treated, including the full imperfection sensitivity at complete and near coincidence plotted in three-dimensional form; these relate to an earlier stiffened-plate formulation. The general scheme is thus made directly accessible for any problem that exhibits a bifurcational manifestation of either the elliptic or hyperbolic umbilic catastrophe.



Author(s):  
Lei Zhang ◽  
C. Q. Ru

Imperfection sensitivity is essential for mechanical behaviour of biopolymer shells characterized by high geometric heterogeneity. The present work studies initial post-buckling and imperfection sensitivity of a pressured biopolymer spherical shell based on non-axisymmetric buckling modes and associated mode interaction. Our results indicate that for biopolymer spherical shells with moderate radius-to-thickness ratio (say, less than 30) and smaller effective bending thickness (say, less than 0.2 times average shell thickness), the imperfection sensitivity predicted based on the axisymmetric mode without the mode interaction is close to the present results based on non-axisymmetric modes with the mode interaction with a small (typically, less than 10%) relative errors. However, for biopolymer spherical shells with larger effective bending thickness, the maximum load an imperfect shell can sustain predicted by the present non-axisymmetric analysis can be significantly (typically, around 30%) lower than those predicted based on the axisymmetric mode without the mode interaction. In such cases, a more accurate non-axisymmetric analysis with the mode interaction, as given in the present work, is required for imperfection sensitivity of pressured buckling of biopolymer spherical shells. Finally, the implications of the present study to two specific types of biopolymer spherical shells (viral capsids and ultrasound contrast agents) are discussed.



2021 ◽  
Vol 13 (2) ◽  
pp. 637
Author(s):  
Tomas Astrauskas ◽  
Tomas Januševičius ◽  
Raimondas Grubliauskas

Studies on recycled materials emerged during recent years. This paper investigates samples’ sound absorption properties for panels fabricated of a mixture of paper sludge (PS) and clay mixture. PS was the core material. The sound absorption was measured. We also consider the influence of an air gap between panels and rigid backing. Different air gaps (50, 100, 150, 200 mm) simulate existing acoustic panel systems. Finally, the PS and clay composite panel sound absorption coefficients are compared to those for a typical commercial absorptive ceiling panel. The average sound absorption coefficient of PS-clay composite panels (αavg. in the frequency range from 250 to 1600 Hz) was up to 0.55. The resulting average sound absorption coefficient of panels made of recycled (but unfinished) materials is even somewhat higher than for the finished commercial (finished) acoustic panel (αavg. = 0.51).



Catalysts ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 72
Author(s):  
Christian Zambrzycki ◽  
Runbang Shao ◽  
Archismita Misra ◽  
Carsten Streb ◽  
Ulrich Herr ◽  
...  

Core-shell materials are promising functional materials for fundamental research and industrial application, as their properties can be adapted for specific applications. In particular, particles featuring iron or iron oxide as core material are relevant since they combine magnetic and catalytic properties. The addition of an SiO2 shell around the core particles introduces additional design aspects, such as a pore structure and surface functionalization. Herein, we describe the synthesis and application of iron-based core-shell nanoparticles for two different fields of research that is heterogeneous catalysis and water purification. The iron-based core shell materials were characterized by transmission electron microscopy, as well as N2-physisorption, X-ray diffraction, and vibrating-sample magnetometer measurements in order to correlate their properties with the performance in the target applications. Investigations of these materials in CO2 hydrogenation and water purification show their versatility and applicability in different fields of research and application, after suitable individual functionalization of the core-shell precursor. For design and application of magnetically separable particles, the SiO2 shell is surface-functionalized with an ionic liquid in order to bind water pollutants selectively. The core requires no functionalization, as it provides suitable magnetic properties in the as-made state. For catalytic application in synthesis gas reactions, the SiO2-stabilized core nanoparticles are reductively functionalized to provide the catalytically active metallic iron sites. Therefore, Fe@SiO2 core-shell nanostructures are shown to provide platform materials for various fields of application, after a specific functionalization.



CrystEngComm ◽  
2020 ◽  
Vol 22 (46) ◽  
pp. 8036-8044
Author(s):  
Jannis Wehmeier ◽  
Markus Haase

is an interesting shell material for β-NaREF4 particles of the lighter lanthanides (RE = Ce, Pr, Nd), as variation of its strontium content x allows to vary its lattice parameters and match those of the core material.



2010 ◽  
Vol 24 (15n16) ◽  
pp. 3124-3130 ◽  
Author(s):  
HUI CONG LIU ◽  
XIU QING XU ◽  
WEI PING LI ◽  
YAN HONG GUO ◽  
LI-QUN ZHU

The shell material of microcapsules has an important effect on the electrolytic co-deposition behavior, the release of core material and the surface performance of composite coating. This paper discussed the tensile property and the stability of three shell materials including polyvinyl alcohol (PVA), gelatin and methyl cellulose (MC). It is found that these three shell materials have good mechanical strength and flexibility which are favorable to electrolytic co-deposition and stability of microcapsules in composite coating and that MC has well permeability and porosity which has a positive effect on the release of the core material in composite coating. Moreover, the study of the thermal properties and water vapor permeability of the three shell materials showed that their permeability improved with increase of temperature and humidity. In addition, the composite copper coating containing microcapsules with PVA, gelatin or MC as shell material was prepared respectively.



Author(s):  
Cesim Atas ◽  
Alper Basmaci

AbstractThe damage behavior of the potting materials around a pinhole, being used in the mechanical joints of sandwich composites, is investigated experimentally. The sandwich composite panels used in the tests were manufactured by the vacuum-assisted resin infusion technique. Each of the top and bottom face sheets of the panels consisted of two woven E-glass/epoxy layers. As the core material, PVC foam (AIREX



Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 12
Author(s):  
Łukasz Święch ◽  
Radosław Kołodziejczyk ◽  
Natalia Stącel

The work concerns the experimental analysis of the process of destruction of sandwich structures as a result of circumferential shearing. The aim of the research was to determine the differences that occur in the destruction mechanism of such structures depending on the thickness and material of the core used. Specimens with a Rohacell foam core and a honeycomb core were made for the purposes of the research. The specimen destruction process was carried out in a static loading test with the use of a system introducing circumferential shear stress. The analysis of the tests results was made based on the load-displacement curves, the maximum load, and the energy absorbed by individual specimens. The tests indicated significant differences in the destruction mechanism of specimens with varied core material. The specimen with the honeycomb core was characterized by greater stiffness, which caused the damage to occur locally in the area subjected to the pressure of the punch. In specimens with the foam core, due to the lower stiffness of that core, the skins of the structure were bent, which additionally transfers compressive and tensile loads. This led to a higher maximum force that the specimens obtained at the time of destruction and greater energy absorption.



Sign in / Sign up

Export Citation Format

Share Document