Analysis and Numerical Simulation of the Mechanical Performance of FDM Samples With Variable Infill Values

Author(s):  
Steffany N. Cerda-Avila ◽  
Hugo I. Medellín-Castillo ◽  
Dirk F. de Lange

The prediction of the mechanical properties of AM parts is very important in order to design and fabricate parts not only of any geometrical shape but also with variable or customized mechanical properties. A limited number of investigations have focused on the analysis and prediction of the mechanical properties of AM parts using theoretical and numerical approaches such as the Finite Element Method (FEM); nevertheless, their results have been not accurate yet. Thus, more research work is needed in order to develop reliable prediction models able to estimate the mechanical performance of AM parts before fabrication. In this paper the analysis and numerical simulation of the mechanical performance of FDM samples with variable infill values is presented. The aim is to predict the mechanical performance of FDM components using numerical models. Thus, several standard tensile test specimens were fabricated in an FDM system using different infill values, a constant layer thickness, one shell perimeter, and PLA material. These samples were measured and modelled in a CAD system before performing the experimental tensile tests. Numerical models and simulations based on the FEM method were then developed and carried out in order to predict the structural performance of the specimens. Finally the experimental and numerical results were compared and conclusions drawn.

Author(s):  
Steffany N. Cerda-Avila ◽  
Hugo I. Medellín-Castillo ◽  
Dirk F. de Lange

The prediction of the structural performance of additive manufacturing (AM) parts has become one of the main challenges to boost the use of AM in industry. The structural properties of AM are very important in order to design and fabricate parts not only of any geometrical shape but also with variable or customized mechanical properties. While AM experimental studies are common in the literature, a limited number of investigations have focused on the analysis and prediction of the mechanical properties of AM parts using theoretical and numerical approaches, such as the finite element method (FEM); however, their results have been not accurate yet. Thus, more research work is needed in order to develop reliable prediction models able to estimate the mechanical performance of AM parts before fabrication. In this paper, the analysis and numerical simulation of the structural performance of fused deposition modeling (FDM) samples with variable infill values is presented. The aim is to predict the mechanical performance of FDM components using numerical models. Thus, several standard tensile test specimens were fabricated in an FDM system using different infill values, a constant layer thickness, one shell perimeter, and polylactic acid (PLA) material. These samples were measured and modeled in a computer-aided design (CAD) system before performing the experimental tensile tests. Numerical models and simulations based on the FEM method were then developed and carried out in order to predict the structural performance of the specimens. Finally, the experimental and numerical results were compared and conclusions drawn.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5856
Author(s):  
Pragya Mishra ◽  
Pia Åkerfeldt ◽  
Farnoosh Forouzan ◽  
Fredrik Svahn ◽  
Yuan Zhong ◽  
...  

Laser powder bed fusion (L-PBF) has attracted great interest in the aerospace and medical sectors because it can produce complex and lightweight parts with high accuracy. Austenitic stainless steel alloy 316 L is widely used in many applications due to its good mechanical properties and high corrosion resistance over a wide temperature range. In this study, L-PBF-processed 316 L was investigated for its suitability in aerospace applications at cryogenic service temperatures and the behavior at cryogenic temperature was compared with room temperature to understand the properties and microstructural changes within this temperature range. Tensile tests were performed at room temperature and at −196 °C to study the mechanical performance and phase changes. The microstructure and fracture surfaces were characterized using scanning electron microscopy, and the phases were analyzed by X-ray diffraction. The results showed a significant increase in the strength of 316 L at −196 °C, while its ductility remained at an acceptable level. The results indicated the formation of ε and α martensite during cryogenic testing, which explained the increase in strength. Nanoindentation revealed different hardness values, indicating the different mechanical properties of austenite (γ), strained austenite, body-centered cubic martensite (α), and hexagonal close-packed martensite (ε) formed during the tensile tests due to mechanical deformation.


Author(s):  
Andrei Dumitrescu ◽  
Alin Diniţă

Abstract This paper presents the results of the research work carried out by the authors in order to evaluate the efficiency of the composite material wraps/sleeves (made of a polymeric matrix and reinforcing fabric) used to repair steel pipelines carrying hydrocarbons upon which local metal loss defects (generated by corrosion and/or erosion processes) have been detected. The pipeline repair technologies consisting of the application of composite material wraps are perceived as being advantageous alternative solutions for substituting the conventional technologies, which require welding operations to be performed in the pipe areas with defects. The efficiency of the composite repair systems has been investigated by assessing the reinforcement effects (the restoration level of the damaged pipe mechanical strength) generated by the applied composite wraps as a function of their geometry and mechanical properties. To that purpose, numerical models based on finite elements have been developed and certified by comparing them with the results of several experimental programs previously performed by the authors. Finite elements simulations have also been conducted in the plastic region, taking into account material non-linearity. The calculation methods proposed in literature (among which a method previously developed by the authors) to define the composite wrap dimensions (thickness and length) for a given pipe have also been investigated and compared to our numerical results in order to select the most adequate solution for the design of the composite repair system. The optimal values for the mechanical properties of the composite material used by the repair system have also been defined.


2018 ◽  
Vol 48 (7) ◽  
pp. 1206-1227 ◽  
Author(s):  
Muhammad Kashif ◽  
Syed Talha Ali Hamdani ◽  
Yasir Nawab ◽  
Muhammad Ayub Asghar ◽  
Muhammad Umair ◽  
...  

For structural design applications, through-thickness characteristics of reinforcement played a vital role, which is why 3D woven preforms are recommended for such applications. These characteristics are mainly dependent on the fiber and yarn positioning in reinforcement. Although research has been conducted for characterizing woven composites, special attention has not been made on weave pattern parameter which directly affects the mechanical performance of composites. In this research work, 3D orthogonal layer to layer and through thickness woven structures with different interlocking patterns have been thoroughly studied for their mechanical properties, thickness, air permeability and areal density. Natural fibers when used with biodegradable matrix find use in structural, as well as low to medium impact applications for automobiles. Jute yarn was used to produce four-layered 3D woven structures, as synthetic fibers will not give a biodegradable composite part. The focus of this study is to optimize weave pattern, which is robust in design, degradable preforms and easy to reproduce. The main objective of this research focused on the effectiveness of weaving patterns on physical and mechanical properties as well as to optimize the weave pattern for optimum performance. Grey relational analysis was used for the optimization of the robust weave pattern. The results showed that hybrid structures can be useful for improving the properties of the orthogonal layer to layer and through thickness woven structures. It was also noted that weft-way 3D woven structures can provide comparable mechanical properties with warp-way 3D woven structures.


2012 ◽  
Vol 472-475 ◽  
pp. 1406-1417
Author(s):  
Zhen Zhong Fan ◽  
Yan Cai Xiong ◽  
Yong Jiang Zhou

This paper describes the cast structure study of A357 aluminum alloy stress frame casting under consecutive solidification and simultaneous solidification by test and numerical simulation methods, with the conclusions of tensile tests by using of SEM and EDS analysis, the mechanical properties and fracture morphology were observed both under the cast and T6 heat-treatment state. Intergranular fracture cracks were observed to be the main failure mode in the casting state condition, cracks originated from the tissue defects and continued to proliferate until the tensile specimens were ruptured. Simultaneous solidification can decrease the casting shrinkage and micro-cavity and improve the mechanical properties of the castings. Dimple fracture was the dominated failure mode after T6 heat treatment state, the distribution of some intergranular cracks staggered with dimple fracture can surveyed under the fractography analysis. The superiority of simultaneous solidification was demonstrated by the numerical simulation of China casting CAE.


2013 ◽  
Vol 284-287 ◽  
pp. 198-203
Author(s):  
Hsiu Ying Hwang ◽  
Nguyen Quoc Nghiem

Spot welds have been widely used in vehicle body assembly, and can affect the performance of a vehicle. This paper studies the mechanical properties of spot weld and utilizes those properties in the numerical simulation to predict the failure behavior of a spot-welded component. The mechanical properties of a spot weld are not easy to obtain due to the size of spot weld, and the non-uniformity around the weld zone. The study utilized the hardness measured on and around the spot weld, heat treated samples with the same hardness, and then performed the tensile tests on those heat treated specimens to obtain the corresponding mechanical properties. With those testing data, the numerical simulation model was then created based on the properties obtained. A single-spot-welded part was used to correlate the results of hardware tests and numerical simulation. The study compared the results of three different modeling schemes with those of the hardware test. The results showed that the simulation model with material properties assigned to their corresponding region provided better correlation with the hardware testing results.


2011 ◽  
Vol 674 ◽  
pp. 141-146 ◽  
Author(s):  
Tomasz Tokarski

The present paper is aimed at investigations of mechanical properties and structure of technical purity aluminum powders prepared by plastic consolidation process. The research work is focused on effective improvement of mechanical properties of material while keeping the conductivity at high level. It is well known that application of rapid solidification method with hot extrusion technique leads to grain refinement, as so according to Hall-Petch rule, improvement in mechanical properties of material can be expected. Furthermore, additional material strength can be obtained by aluminum oxides from free surface of powders that became internal boundaries during consolidation process. Aluminum powders atomized by air, argon and water were cold compacted and extruded at temperatures of 325°C and 375°C. For comparison purposes the same extrusion conditions were applied to cast aluminum. In order to analyze effect of recrystalization process during hot extrusion operation, different extrusion temperatures were chosen. Tensile tests as well as micro-hardnes measurements showed significant increase in mechanical strength for RS samples in comparison to conventionally cast material. Structural observations by means of transmission electron microscopy revealed that grain size of materials extruded at the given temperature was at the same level, however amount and distribution of oxides particles differs significantly. It was considered that differences in strength between individual RS material were attributed to this effect.


2004 ◽  
Vol 841 ◽  
Author(s):  
N. R. Moody ◽  
J. M. Jungk ◽  
M. S. Kennedy ◽  
S. V. Prasad ◽  
D. F. Bahr ◽  
...  

ABSTRACTStrength, friction, and wear are dominant factors in the performance and reliability of materials and devices fabricated using nickel based LIGA and silicon based MEMS technologies. However, the effects of frictional contacts and wear on the mechanical performance of microdevices are not well-defined. To address these effects on performance of LIGA nickel, we have begun a program employing nanoscratch and nanoindentation. Nanoscratch techniques were used to generate wear patterns using loads of 100, 200, 500, and 990 μN with each load applied for 1, 2, 5, and 10 passes. Nanoindentation was then used to measure properties in each wear pattern correcting for surface roughness. The results showed a systematic increase in hardness with applied load and number of nanoscratch passes. The results also showed that the work hardening coefficient determined from indentation tests within wear patterns follows the work hardening behavior established from tensile tests, supporting use of a nanomechanics-based approach for studying mechanical properties of wear tested material.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1175
Author(s):  
Pavel A. Somov ◽  
Eugene S. Statnik ◽  
Yuliya V. Malakhova ◽  
Kirill V. Nyaza ◽  
Alexey I. Salimon ◽  
...  

Recent years witnessed progressive broadening of the practical use of 3D-printed aluminium alloy parts, in particular for specific aerospace applications where weight saving is of great importance. Selective laser melting (SLM) is an intrinsically multi-parametric fabrication technology that offers multiple means of controlling mechanical properties (elastic moduli, yield strength, and ductility) through the control over grains size, shape, and orientation. Targeted control over mechanical properties is achieved through the tuning of 3D-printing parameters and may even obviate the need of heat treatment or mechanical post-processing. Systematic studies of grain structure for different printing orientations with the help of EBSD techniques in combination with mechanical testing at different dimensional levels are the necessary first steps to implement this agenda. Samples of 3D-printable Al-Mg-Si RS-333 alloy were fabricated in three orientations with respect to the principal build direction and the fast laser beam scanning direction. Sample structure and proper-ties were investigated using a number of techniques, including EBSD, in situ SEM tensile testing, roughness measurements, and nanoindentation. The as-printed samples were found to display strong variation in Young’s modulus values from nanoindentation (from 43 to 66 GPa) and tensile tests (from 54 to 75 GPa), yield stress and ultimate tensile strength (100–195 and 130–220 MPa) in different printing orientations, and almost constant hardness of about 0.8 GPa. A further preliminary study was conducted to assess the effect of surface finishing on the mechanical performance. Surface polishing was seen to reduce Young’s modulus and yield strength but improves ductility, whereas the influence of sandblasting was found to be more controversial. The experimental results are discussed in connection with the grain morphology and orientation.


2012 ◽  
Vol 1373 ◽  
Author(s):  
I. Mejía ◽  
A. García de la Rosa ◽  
A. Bedolla-Jacuinde ◽  
J.M. Cabrera

ABSTRACTThe aim of this research work is to study the effect of boron addition on mechanical properties and microstructure of a new family of low carbon NiCrVCu advanced high strength steels (AHSS). Experimental steels are thermo-mechanically processed (TMP) (hot-rolled+quenched). Results show that the microstructure of these steels contains bainite and martensite, predominantly, which nucleate along prior austenite grain boundaries (GB). On the other hand, tensile tests reveal that the TMP steels have YS (0.2% offset) of 978 MPa, UTS of 1140 MPa and EL of 18%. On the basis of exhibited microstructure and mechanical properties, these experimental steels are classified as bainitic-martensitic complex phase (CP) advanced ultra-high strength steels (UHSS).


Sign in / Sign up

Export Citation Format

Share Document