Environmental and Economic Analysis of Low Emissions Yard and Industrial Switchers

Author(s):  
Alexander Ricci ◽  
Bryan Schlake

As railroads and local industries served by rail seek to reduce emissions and improve fuel efficiency, new technologies are being developed to serve this market. Contrary to the minimal competitive options available over the last several decades, new companies are now emerging with a variety of locomotive designs aimed at low emissions and low horsepower solutions. Some technologies involve alternative fuels (e.g. natural gas, bio-diesel, battery power, etc.), while others incorporate very low horsepower diesel engines (400hp–1000hp) in order to meet the Tier 4 regulations set by the Environmental Protection Agency (EPA). Yet another option available to railroads and local industries is the mobile railcar mover. Typically used within railroad yard limits or on industry tracks, yard and industrial switchers and mobile railcar movers travel short distances, but must be capable of moving large loads. Subject to high forces when moving cars, these technologies must be both resilient (requiring minimal maintenance) and safe (not subject to derailment or loss of control). As the current market for yard and industrial switchers continues to expand, both railroads and local industries served by rail are placing greater emphases on the environmental and economic benefits of the emerging technologies. This paper aims to analyze the current yard and industrial switcher market and draw conclusions based on emissions data and lifecycle costs. Industrial switchers are compared with yard switchers and mobile railcar movers. Although industrial switchers are more limited in horsepower and operational versatility than yard switchers, many of the daily operations between the two are similar. Mobile railcar movers (e.g. Trackmobile® and Rail King®) offer lower initial costs as well as the versatility of both on-track and off-track movement. However, they may require additional maintenance and offer reduced tractive effort compared to locomotive technologies. As the demands on railroad yard and industry operations grow increasingly complex due to environmental regulations and economic demands, these new technologies have the potential to increase competition in the marketplace and offer improved engineering solutions. By developing a hierarchy of key requirements of yard or industry switchers, this paper provides a framework for identifying the best options available to a railroad or local industries. The scope of this paper will include a review of all options available, but will place a greater emphasis on technologies that are commercially available for wide distribution. By sampling and analyzing the current industrial market, much insight can be gained into daily operational requirements and challenges faced by this sector of the industry.

2018 ◽  
Vol 3 (12) ◽  
pp. 106-111 ◽  
Author(s):  
Danh Chan Nguyen ◽  
Van Huong Dong

Transportation is facing two major challenges: renewable energy supplies and clean transport. On the other hand, the pressure from environmental pollution has led regulators around the world to come up with laws that have forced the auto and petrochemical industries to develop new technologies that reduce emissions and improve the quality of life. fuel economy. 2,5-Dimethylfuran (DMF), which is considered to be a new generation of promising alternative fuels, has the potential to reduce global fossil fuel shortage and air pollution problems. This article introduces the technical specifications and emissions of 2,5-Dimethylfuran (DMF), DMF production and application potential, developing DMF as alternative fuel sources in the World and in Vietnam.


2010 ◽  
Vol 14 (suppl.) ◽  
pp. 15-25 ◽  
Author(s):  
Masa Bukurov ◽  
Milun Babic ◽  
Blazo Ljubicic

There are very few issues that are as important to our collective future as energy. Like everyone else, Serbia has its stake in reducing energy price, enhancing the security of energy supply, and reducing emissions, including greenhouse gas (GHG) emissions associated with fossil fuels. In the years to come Serbian economy is expected to grow and industry to search and explore the potential of using cleaner alternative fuels. There is a lot that could be done to conserve energy and to reduce environmental footprint. But the most important thing that could be done to enable Serbian industry to reduce emissions is the implementation of a modernized Power Generation system. At the same time the reality can?t be neither sugarcoated nor ignored and alternatives to fossil fuel will succeed only if they are economically feasible for suppliers and users alike. New technologies currently under development should be considered to allow Serbia the use of energy resources in a more efficient ways and with better protection of the environment. If successfully deployed, the development of alternative, renewable fuels will allow Serbian energy sector to effectively decouple its growth from GHG emissions. This paper explore opportunities and the potential of alternative fuels for increasing competition in energy supply, for reducing emissions and in Serbia while decreasing dependence on imported energy.


2021 ◽  
pp. 146808742110129
Author(s):  
Hidemi Ogihara ◽  
Takumi Iwata ◽  
Yuji Mihara ◽  
Makoto Kano

Internal combustion engines have been improved markedly in recent years through efforts to conserve resources, reduce emissions and improve fuel efficiency. In this regard, the authors have been working to reduce friction and improve the seizure properties of the crankshaft main journal and main bearing. These mechanical components of internal combustion engines incur large friction losses. In order to reduce friction, journals have been coated with a diamond-like carbon (DLC) coating, which has been reported to reduce friction in the fluid lubrication regime in recent years. Another current issue of journals and bearings is the need to improve seizure resistance. Therefore, these properties were evaluated for material combinations of aluminium alloy bearings and DLC-coated journals, which have low affinity. The results revealed that friction was reduced under a fluid lubrication regime and seizure resistance was improved under a mixed lubrication regime.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4491
Author(s):  
Changchun Xu ◽  
Haengmuk Cho

Due to the recent global increase in fuel prices, to reduce emissions from ground transportation and improve urban air quality, it is necessary to improve fuel efficiency and reduce emissions. Water, methanol, and a mixture of the two were added at the pre-intercooler position to keep the same charge and cooling of the original rich mixture, reduce BSFC and increase ITE, and promote combustion. The methanol/water mixing volume ratios of different fuel injection strategies were compared to find the best balance between fuel consumption, performance, and emission trends. By simulating the combustion mechanism of methanol, water, and diesel mixed through the Chemkin system, the ignition delay, temperature change, and the generation rate of the hydroxyl group (−OH) in the reaction process were analyzed. Furthermore, the performance and emission of the engine were analyzed in combination with the actual experiment process. This paper studied the application of different concentration ratios of the water–methanol–diesel mixture in engines. Five concentration ratios of water–methanol blending were injected into the engine at different injection ratios at the pre-intercooler position, such as 100% methanol, 90% methanol/10% water, 60% methanol/40% water, 30% methanol/70% water, 100% water was used. With different volume ratios of premixes, the combustion rate and combustion efficiency were affected by droplet extinguishment, flashing, or explosion, resulting in changes in combustion temperature and affecting engine performance and emissions. In this article, the injection carryout at the pre-intercooler position of the intake port indicated thermal efficiency increase and a brake specific fuel consumption rate decrease with the increase of water–methanol concentration, and reduce CO, UHC, and nitrogen oxide emissions. In particular, when 60% methanol and 40% water were added, it was found that the ignition delay was the shortest and the cylinder pressure was the largest, but the heat release rate was indeed the lowest.


Electronics ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1092 ◽  
Author(s):  
Sunddararaj ◽  
Rangarajan ◽  
Gopalan

The utilization of plug-in electric vehicles (PEV) has started to garner more attention worldwide considering the environmental and economic benefits. This has led to the invention of new technologies and motifs associated with batteries, bidirectional converters and inverters for Electric Vehicle applications. In this paper, a novel design and control of chopper circuit is proposed and configured with the series and parallel connection of the power electronic based switches for two-way operation of the converter. The bidirectional action of the proposed converter makes it suitable for plug-in electric vehicle applications as the grid is becoming smarter. The DC–DC converter is further interfaced with the designed multilevel inverter (MLI). The reduced switches associated with the novel design of MLI have overcome the cons associated with the conventional inverters in terms of enhanced performance in the proposed design. Further, novel control strategies have been proposed for the DC–DC converter based on Proportional Integral (PI) and Fuzzy based control logic. For the first time, the performance of the entire system is evaluated based on the comparison of proposed PI, fuzzy, and hybrid controllers. New rules have been formulated for the Fuzzy based controllers that are associated with the Converter design. This has further facilitated the interface of bidirectional DC–DC converter with the proposed MLI for an enhanced output voltage. The results indicate that the proposed hybrid controller provides better performance in terms of voltage gain, ripple, efficiency and overall aspects of power quality that forms the crux for PEV applications. The novelty of the design and control of the overall topology has been manifested based on simulation using MATLAB/SIMULINK.


2018 ◽  
Vol 2 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Togar W. S. Panjaitan ◽  
Paul Dargusch ◽  
Ammar A. Aziz ◽  
David Wadley

Around 600 Mt carbon dioxide equivalents (CO2e) of anthropogenic greenhouse gases (GHG) emission originates from energy production and consumption in Indonesia annually. Of this output, 40 Mt CO2e comes from cement production. This makes the cement industry a key sector to target in Indonesia’s quest to reduce its emissions by 26% by 2020. Substantial opportunities exist for the industry to reduce emissions, mainly through clinker substitution, alternative fuels, and the modernization of kiln technologies. However, most of these abatement options are capital intensive and considered as noncore business. Due to this, the private sector is unlikely to voluntarily invest in emission reduction unless it saves money, improves revenue, enhances the strategic position of the firm, or unless governments provide incentives or force adoption through regulatory and policy controls. In this study, we review the profile of the Indonesian cement industry and assess the carbon management and climate policy actions available to reduce emissions. The case highlights opportunities for improved carbon management in emission-intensive industries in developing countries.


10.12737/1575 ◽  
2013 ◽  
Vol 2 (5) ◽  
pp. 25-30 ◽  
Author(s):  
Николайкин ◽  
N. Nikolaykin

The modern directions of environment protection against aircraft influence in the light of International Civil Aviation Organization (IСAO) decisions have been analyzed. Modern priorities in this activity have been revealed, tendencies of development related to international and civil aviation, as well as evolution of ecological requirements to aircraft, civil aviation’s fuel efficiency increase directions and alternative fuels, problems of aviation noise impact on habitat have been considered.


2015 ◽  
Vol 4 (2) ◽  
pp. 67-72 ◽  
Author(s):  
Самойлов ◽  
M. Samoylov ◽  
Бурцев ◽  
S. Burtsev ◽  
Симаков ◽  
...  

The influence of the circuitry of the hybrid power plant short and medium haul aircraft on their fuel efficiency and environmental characteristics have been investigated. Directions of improvement of traditional patterns of power plants of aircraft on the example of PD-14 engine were analyzed. It has been shown that the use of turbojet engines and traditional schemes operating on aviation kerosene, will not allow to fulfill the demands made by the International Civil Aviation Organization (ICAO) to perspective plane 2025–2035. The analysis of the three schemes hybrid propulsion systems has been performed. It has been shown that using the presented hybrid propulsion systems of alternative fuels can reduce CO2 emissions by 19% to 20% compared with conventional turbojet engines, which run on kerosene TS-1. It has been shown that this fuel efficiency is increased by 2–3%, and the total mass of the power plant increases of 6 to 16%.


2021 ◽  
Vol 2021 ◽  
pp. 1-26
Author(s):  
Ang Yang ◽  
Mingzhe Han ◽  
Qingcheng Zeng ◽  
Yuhui Sun

The construction industry is undergoing a digital revolution due to the emergence of new technologies. A significant trend is that construction projects have been transformed and upgraded to the digital and smart mode in the whole life cycle. As a critical technology for the construction industry’s innovative development, building information modeling (BIM) is widely adopted in building design, construction, and operation. BIM has gained much interest in the research field of smart buildings in recent years. However, the dimensions of BIM and smart building applications have not been explored thoroughly so far. With an in-depth review of related journal articles published from 1996 to July 2020 on the BIM applications for smart buildings, this paper provides a comprehensive understanding and critical thinking about the nexus of BIM and smart buildings. This paper proposes a framework with three dimensions for the nexus of BIM application in smart buildings, including BIM attributes, project phases, and smart attributes. According to the three dimensions, this paper elaborates on (1) the advantages of BIM for achieving various smartness; (2) applications of BIM in multiple phases of smart buildings; and (3) smart building functions that be achieved with BIM. Based on the analysis of the literature in three dimensions, this paper presents the cross-analysis of the nexus of BIM and smart buildings. Lastly, this paper proposes the critical insights and implications about the research gaps and research trends: (1) enhancing the interoperability of BIM software; (2) further exploring the role of BIM in the operation and refurbishment phase of smart buildings; (3) paying attention to BIM technology in the field of transportation infrastructure; (4) clarifying the economic benefits of BIM projects; and (5) integrating BIM and other technologies.


2001 ◽  
Vol 38 (03) ◽  
pp. 193-207
Author(s):  
Robb Wilcox ◽  
Mark Burrows ◽  
Sujit Ghosh ◽  
Bilal M. Ayyub

The introduction of alternative fuels (other than diesel oil or gasoline) for some commercially operated marine vessels presents a problem to marine regulators and designers since accepted standards and U.S. Coast Guard policy have not been established. Establishing safe design criteria is a common problem with the introduction of new technologies, novel concepts, and complex systems. In order to determine design safety for novel marine concepts such as compressed natural gas (CNG) fuel, a formal system safety approach may be used. Risk-based technologies (RBT) provide techniques to facilitate the proactive evaluation of system safety through risk assessment, risk control, risk management, and risk communication. The proposed outfitting of a CNG fuel system on the Kings Pointer training vessel is discussed as a specific marine application of CNG fuel and an appropriate situation for applying system safety techniques.


Sign in / Sign up

Export Citation Format

Share Document