Experimental and Numerical Investigations on VIV Response of a Pipe in Shear Flow

2020 ◽  
Author(s):  
Dipanjan Karanjai ◽  
S. Nallayarasu ◽  
S. K. Bhattacharya

Abstract The vortex induced vibration of slender cylindrical structures is common in offshore structures and marine applications such as risers, towing cables, etc. The VIV response of such slender elements in steady uniform current has been investigated in the past using numerical and experimental studies. Though few numerical studies exist for varying current (sheared flow), experimental studies are limited. Hence, the experimental studies are an essential part of VIV investigation, especially for sheared flow. The experiments were conducted using a specially fabricated circular steel tank of diameter 2.4 m with a central hinge to rotate the pipe horizontally in a water pool of depth 0.7 m. Shear current is simulated by rotating the pipe about the hinge. A pipe of diameter 25 mm (= D) and length 1 m (= L) was fixed at one end of the rotating cable support, and the other end was passed over a pulley inside a rotating cylinder. The rotating cylinder is provided with a pulley at the top to tension the pipe. A shear current with a maximum velocity of 1.3 m/s and a minimum velocity of 0.1 m/s is generated using the set up. The VIV response of the pipe was measured using electrical resistance-type strain gauges pasted along the length. The measured axial strain was used to obtain transverse displacements, which was used to determine the response frequency, amplitudes, and forces. The Strouhal number was calculated. The VIV response and the fluid force coefficients obtained from the experiments were compared with Shear7 results.

Author(s):  
Mohammed Islam ◽  
Don Spencer ◽  
Paul Herrington ◽  
Dan Walker ◽  
Hisham Moideen ◽  
...  

Current velocity, profile, direction, and duration may affect hydrodynamic loads and VIM of offshore structure. It is often recommended that physical experiments are carried out in sheared current, in multiple directions and for sufficiently long period of time to investigate the hydrodynamic characteristics of deep draft offshore structures to obtain better correlation to the field measurements. This necessitates generating sheared current with acceptable turbulence level. This paper presents a recent advancement in generating sheared current in a flume tank facility. In this process, the test specimen remains moored and the water flows past with its velocity varied with depth as long as necessary. A combination of synthetic and wire meshes are used to provide the required amount of blockage onto the circulating channel flow of the flume tank to obtain specified current distribution across the cross-section and at the longitudinal center of the tank. The final set-up of the current screen provided a sheared flow distribution within 10% of the targets. Also, the measured turbulence level was below 10% in all the locations measured. VIM studies of a model spar were successfully carried out in the generated sheared current in the flume tank facility. The ability to accurately model the sheared flow essentially improves the accuracy of the measured VIM type response measurements. The generated sheared current can also be applied for other hydrodynamic experiments where sheared current is relevant.


Author(s):  
Donghui Zhang ◽  
Ruijie Liu

Abstract Orienteering has gradually changed from a professional sport to a civilian sport. Especially in recent years, orienteering has been widely popularized. Many colleges and universities in China have also set up this course. With the improvement of people’s living conditions, orienteering has really become a leisure sport in modern people’s life. The reduced difficulty of sports enables more people to participate, but it also exposes a series of problems. As the existing positioning technology is relatively backward, the progress in personnel tracking, emergency services, and other aspects is slow. To solve these problems, a new intelligent orienteering application system is developed based on the Internet of things. ZigBee network architecture is adopted in the system. ZigBee is the mainstream scheme in the current wireless sensor network technology, which has many advantages such as convenient carrying, low power consumption, and signal stability. Due to the complex communication environment in mobile signal, the collected information is processed by signal amplification and signal anti-interference technology. By adding anti-interference devices, video isolators and other devices, the signal is guaranteed to the maximum extent. In order to verify the actual effect of this system, through a number of experimental studies including the relationship between error and traffic radius and the relationship between coverage and the number of anchor nodes, the data shows that the scheme studied in this paper has a greater improvement in comprehensive performance than the traditional scheme, significantly improving the accuracy and coverage. Especially the coverage is close to 100% in the simulation experiment. This research has achieved good results and can be widely used in orienteering training and competition.


Glycobiology ◽  
2021 ◽  
Author(s):  
Jaya Srivastava ◽  
P Sunthar ◽  
Petety V Balaji

Abstract A distinctive feature of glycans vis-à-vis proteins and nucleic acids is its structural complexity which arises from the huge repertoire of monosaccharides, isomeric linkages and branching. A very large number of monosaccharides have so far been discovered in natural glycans. Experimentally, pathways for the biosynthesis have been characterized completely for 55 monosaccharides and partially for a few more. However, there is no single platform which provides information about monosaccharide biosynthesis pathways and associated enzymes We have gathered 572 experimentally characterized enzymes of 66 biosynthesis pathways from literature and set up a first of its kind database called the Monosaccharide Biosynthesis Pathways Database http://www.bio.iitb.ac.in/mbpd/). Annotations such as the reaction catalysed, substrate specificity, biosynthesis pathway and PubMed IDs are provided for all the enzymes in the database. Sequence homologs of the experimentally characterized enzymes found in nearly 13,000 completely sequenced genomes from Bacteria and Archaea have also been included in the database. This platform will help in the deduction of evolutionary relationships among enzymes such as aminotransferases, nucleotidyltransferases, acetyltransferases and SDR family enzymes. It can also facilitate experimental studies such as direct enzyme assays to validate putative annotations, establish structure–function relationship, expression profiling to determine the function, determine the phenotypic consequences of gene knock-out/knock-in and complementation studies.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2547
Author(s):  
Elena Garcia ◽  
Julio Torres ◽  
Nuria Rebolledo ◽  
Raul Arrabal ◽  
Javier Sanchez

Reinforced concrete may corrode in anoxic environments such as offshore structures. Under such conditions the reinforcement fails to passivate completely, irrespective of chloride content, and the corrosion taking place locally induces the growth of discrete pits. This study characterised such pits and simulated their growth from experimentally determined electrochemical parameters. Pit morphology was assessed with an optical profilometer. A finite element model was developed to simulate pit growth based on electrochemical parameters for different cathode areas. The model was able to predict long-term pit growth by deformed geometry set up. Simulations showed that pit growth-related corrosion tends to maximise as cathode area declines, which lower the pitting factor. The mechanical strength developed by the passive and prestressed rebar throughout its service life was also estimated. Passive rebar strength may drop by nearly 20% over 100 years, whilst in the presence of cracking from the base of the pit steel strength may decline by over 40%.


2021 ◽  
pp. 1-11
Author(s):  
Yipu Mao ◽  
Muliang Jiang ◽  
Fanyu Zhao ◽  
Liling Long

Currently, DSC has been extensively studied in the diagnosis, differential diagnosis and prognosis evaluation of brain lymphoma, but it has not obtained a uniform standard. By combining DSC imaging features, this study investigated the imaging features and diagnostic value of several types of tumors such as primary brain lymphoma. At the same time, this study obtained data from brain lymphoma patients by data collection and set up different groups to conduct experimental studies to explore the correlation between IVIM-MRI perfusion parameters and DSC perfusion parameters in brain lymphoma. Through experimental research, it can be seen that the combination of two perfusion imaging techniques can more fully reflect the blood flow properties of the lesion, which is beneficial to determine the nature of the lesion.


2022 ◽  
pp. 136943322110651
Author(s):  
Mizan Ahmed ◽  
Qing Quan Liang ◽  
Ahmed Hamoda

Circular concrete-filled double-skin steel tubular (CFDST) columns with external stainless-steel are high-performance composite columns that have potential applications in civil construction including the construction of offshore structures, bridge piers, and transmission towers. Reflecting the limited research performed on investigating their mechanical performance, this study develops a computationally efficient fiber model to simulate the responses of short and slender beam-columns accounting for the influences of material and geometric nonlinearities. Accurate material laws of stainless steel, carbon steel, and confined concrete are implemented in the mathematical modeling scheme developed. A new solution algorithm based on the Regula-Falsi method is developed to maintain the equilibrium condition. The independent test results of short and slender CFDST beam-column are utilized to validate the accuracy of the theoretical solutions. The influences of various column parameters are studied on the load-axial strain [Formula: see text] curves, load-lateral deflection [Formula: see text] curves, column strength curves, and interaction curves of CFDST columns. Design formulas are suggested for designing short and beam-columns and validated against the numerical results. The computational model is found to be capable of simulating the responses of CFDST short and slender columns reasonably well. Parametric studies show that the consideration of the concrete confinement is important for the accuracy of the prediction of their mechanical responses. Furthermore, high-strength concrete can be utilized to enhance their load-carrying capacity particularly for short and intermediate slender beam-columns. The strengths of CFDST columns computed by the suggested design model are in good agreement with the test and numerical results.


2021 ◽  
Author(s):  
Malene Hovgaard Vested ◽  
Erik Damgaard Christensen

Abstract The forces on marine and offshore structures are often affected by spilling breakers. The spilling breaker is characterized by a roller of mixed air and water with a forward speed approximately equal to the wave celerity. This high speed in the top of the wave has the potential to induce high wave loads on upper parts of the structures. This study analyzed the effect of the air content on the forces. The analyses used the Morison equation to examine the effect of the percentage of air on the forces. An experimental set-up was developed to include the injection of air into an otherwise calm water body. The air-injection did introduce a high level a turbulence. It was possible to assess the amount of air content in the water for different amounts of air-injection. In the mixture of air and water the force on an oscillating square cylinder was measured for different levels of air-content, — also in the case without air. The measurements indicated that force coefficients for clear water could be use in the Morison equation as long as the density for water was replaced by the density for the mixture of air and water.


Actuators ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 55
Author(s):  
Huseyin Aggumus ◽  
Rahmi Guclu

This paper investigated the performance of a semi-active tuned mass damper (STMD) on a multi-degree of freedom (MDOF) building model. A magnetorheological (MR) damper was used as a control element that provided semi-activity in the STMD. The Hardware in the Loop Simulation (HILS) method was applied to mitigate the difficulty and expense of experimental studies, as well as to obtain more realistic results from numerical simulations. In the implementation of this method for the STMD, the MR damper was set up experimentally, other parts of the system were modeled as computer simulations, and studies were carried out by operating these two parts simultaneously. System performance was investigated by excitation with two different acceleration inputs produced from the natural frequencies of the MDOF building. Additionally, a robust H ∞ controller was designed to determine the voltage transmitted to the MR damper. The results showed that the HILS method could be applied successfully to STMDs used in structural systems, and robust H ∞ controls improve system responses with semi-active control applications. Moreover, the control performance of the MR damper develops with an increase in the mass of the STMD.


2019 ◽  
Vol 23 (3 Part B) ◽  
pp. 1755-1764 ◽  
Author(s):  
Ahmet Ozturk ◽  
Mehmet Ozalp ◽  
Adnan Sozen ◽  
Metin Guru

This paper deals with the improvement of thermal performance of the heat recovery system in air-to-air unit by using a nanofluid of TiO particles and distilled water. The 2 experimental set-up equipped with 15 copper pipes of a 1000 mm length, 10.5 mm inner diameter, and 12 mm outer diameter was used. The evaporator section consists of 450 mm of heat pipes, the condenser section is 400 mm, and the adiabatic section is 150 mm. In experimental studies, 33% of the evaporator volumes of heat pipes were filled with working fluids. Experiments were carried out at temperatures between 25?C and 90?C by using five different cooling air-flows (40, 42, 45, 61, and 84 g/s), and two different heating powers (3 kW and 6 kW) for the evaporation section, to determine heat removed from the condensation section. Trials were performed for distilled water and nanofluid respectively, and the results were compared with each other. Results revealed that a 50% recovery in the thermal performance of the heat pipe heat recovery system was achieved in the design using TiO nanofluid as the working liquid, at a heating power of 3 kW, air 2 velocity of 2.03 m/s and air-flow of 84 g/s.


2018 ◽  
Vol 140 (5) ◽  
Author(s):  
Rajkumar Shufen ◽  
Uday S. Dixit

Autofrettage is a metal forming technique widely incorporated for strengthening the thick-walled cylindrical and spherical pressure vessels. The technique is based on the principle of initially subjecting the cylindrical or spherical vessel to partial plastic deformation and then unloading it; as a result of which compressive residual stresses are set up. On the basis of the type of the forming load, autofrettage can be classified into hydraulic, swage, explosive, thermal, and rotational. Considerable research studies have been carried out on autofrettage with a variety of theoretical models and experimental methods. This paper presents an extensive review of various types of autofrettage processes. A wide range of theoretical models and experimental studies are described. Optimization of an autofrettage process is also discussed. Based on the review, some challenging issues and key areas for future research are identified.


Sign in / Sign up

Export Citation Format

Share Document