The Influence of Elevated Temperature in Creep Relaxation of Various PTFE Gaskets Production Methods

Author(s):  
Ana C. Silva ◽  
Florian Werner ◽  
Lucas Xavier

Polytetrafluoroethylene (PTFE) products have been widely used for industrial sealing applications due to their outstanding chemical resistance as well as their electrical, anti-stick, impact resistance and low friction properties. Diverse PTFE flat gaskets production methods are available in the industry, which include the combination of a selected Resin Type and a determined manufacturing process, being able to provide a wide range of several types of PTFE gaskets, with different mechanical characteristics. The production method has significant impact on the mechanical properties of the PTFE gaskets, especially the creep relaxation property at elevated temperatures. Therefore, the gasket behavior at high temperatures and, consequently, the bolted flanged joint (BFJ) performance, directly depends on both selected Resin Type and gasket manufacturing process. One of the most used PTFE gasket types is produced from multiaxially expanded PTFE sheets. As it is known, different types of stretching, among other factors, confer to the gasket particular mechanical characteristics. This type of gasket exhibits a very low gasket seating stress, and it is the preferred type for most low bolt load flanges. This paper presents a study of the creep relaxation property at room and elevated temperatures of expanded PTFE gaskets manufactured by different Resin Types and processes of expanding PTFE materials. Experimental results are presented comparing EN 13555 [1] Qsmax, PQR and ΔeGc parameters of the produced PTFE gaskets.

Author(s):  
Ernest L. Hall ◽  
J. B. Vander Sande

The present paper describes research on the mechanical properties and related dislocation structure of CdTe, a II-VI semiconductor compound with a wide range of uses in electrical and optical devices. At room temperature CdTe exhibits little plasticity and at the same time relatively low strength and hardness. The mechanical behavior of CdTe was examined at elevated temperatures with the goal of understanding plastic flow in this material and eventually improving the room temperature properties. Several samples of single crystal CdTe of identical size and crystallographic orientation were deformed in compression at 300°C to various levels of total strain. A resolved shear stress vs. compressive glide strain curve (Figure la) was derived from the results of the tests and the knowledge of the sample orientation.


Alloy Digest ◽  
1975 ◽  
Vol 24 (5) ◽  

Abstract USS TENELON is a completely austenitic, nickel-free stainless steel with exceptionally high strength which is retained at elevated temperatures. It has excellent corrosion resistance in atmospheric and mild acid exposures and maintains nonmagnetic characteristics even when 60% cold reduced. It also has good stress-rupture and creep properties in the range 1200-1500 F. It has a wide range of applications. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fracture toughness, creep, and fatigue. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: SS-311. Producer or source: United States Steel Corporation.


2020 ◽  
Vol 21 (2) ◽  
pp. 97-109 ◽  
Author(s):  
Ana P. dos Santos ◽  
Tamara G. de Araújo ◽  
Gandhi Rádis-Baptista

Venom-derived peptides display diverse biological and pharmacological activities, making them useful in drug discovery platforms and for a wide range of applications in medicine and pharmaceutical biotechnology. Due to their target specificities, venom peptides have the potential to be developed into biopharmaceuticals to treat various health conditions such as diabetes mellitus, hypertension, and chronic pain. Despite the high potential for drug development, several limitations preclude the direct use of peptides as therapeutics and hamper the process of converting venom peptides into pharmaceuticals. These limitations include, for instance, chemical instability, poor oral absorption, short halflife, and off-target cytotoxicity. One strategy to overcome these disadvantages relies on the formulation of bioactive peptides with nanocarriers. A range of biocompatible materials are now available that can serve as nanocarriers and can improve the bioavailability of therapeutic and venom-derived peptides for clinical and diagnostic application. Examples of isolated venom peptides and crude animal venoms that have been encapsulated and formulated with different types of nanomaterials with promising results are increasingly reported. Based on the current data, a wealth of information can be collected regarding the utilization of nanocarriers to encapsulate venom peptides and render them bioavailable for pharmaceutical use. Overall, nanomaterials arise as essential components in the preparation of biopharmaceuticals that are based on biological and pharmacological active venom-derived peptides.


2020 ◽  
Vol 12 ◽  
Author(s):  
Nihar Ranjan Biswal

Background: Surfactant adsorption at the interfaces (solid–liquid, liquid–air, or liquid–liquid) is receiving considerable attention from a long time due to its wide range of practical applications. Objective: Specifically wettability of solid surface by liquids is mainly measured by contact angle and has many practical importances where solid–liquid systems are used. Adsorption of surfactants plays an important role in the wetting process. The wetting behaviours of three plant-based natural surfactants (Reetha, Shikakai, and Acacia) on the glass surface are compared with one widely used nonionic synthetic surfactant (Triton X-100) and reported in this study. Methods: The dynamic contact angle study of three different types of plant surfactants (Reetha, Shikakai and Acacia) and one synthetic surfactant (Triton X 100) on the glass surface has been carried out. The effect of two different types of alcohols such as Methanol and amyl alcohol on wettability of shikakai, as it shows little higher value of contact angle on glass surface has been measured. Results: The contact angle measurements show that there is an increase in contact angle from 47° (pure water) to 67.72°, 65.57°, 68.84°, and 68.79° for Reetha, Acacia, Shikakai, and Triton X-100 respectively with the increase in surfactant concentration and remain constant at CMC. The change in contact angle of Shikakai-Amyl alcohol mixtures are slightly different than that of methanol-Shikakai mixture, mostly there is a gradual increase in contact angle with the increasing in alcohol concentration. Conclusion: There is no linear relationship between cos θ and inverse of surface tension. There was a linear increase in surface free energy results with increase in concentration as more surfactant molecules were adsorbing at the interface enhancing an increase in contact angle.


Author(s):  
_______ Archana ◽  
Charu Datta ◽  
Pratibha Tiwari

Degradation of environment is one of the most serious challenges before the mankind in today’s world. Mankind has been facing a wide range of problem arising out of the degradation of environment. Not only the areas under human inhabitation, but the areas of the planet without human population have also been suffering from these problems. As the population increase day by day, the amenities are not improved simultaneously. With the advancement of science and technologies the needs of human beings has been changing rapidly. As a result different types of environmental problems have been rising. Environmental degradation is a wide- reaching problem and it is likely to influence the health of human population is great. It may be defined the deterioration of the environment through depletion of resources such as air, water, and soil. The destruction of ecosystem and extinction of wildlife. Environmental degradation has occurred due to the recent activities in the field of socio-economic, institute and technology. Poverty still remains a problem as the root of several environmental problems to create awareness among the people about the ill effect of environmental pollution. In the whole research it is clear that all factors of environmental degradation may be reduced through- Framing the new laws on environmental degradation, Environment friend policy, Controlling all the ways and means of noise, air, soil and water pollution, Through growing more and more trees and by adapting the proper sanitation policy.  


2021 ◽  
Vol 11 (7) ◽  
pp. 3209
Author(s):  
Karla R. Borba ◽  
Didem P. Aykas ◽  
Maria I. Milani ◽  
Luiz A. Colnago ◽  
Marcos D. Ferreira ◽  
...  

Portable spectrometers are promising tools that can be an alternative way, for various purposes, of analyzing food quality, such as monitoring in a few seconds the internal quality during fruit ripening in the field. A portable/handheld (palm-sized) near-infrared (NIR) spectrometer (Neospectra, Si-ware) with spectral range of 1295–2611 nm, equipped with a micro-electro-mechanical system (MEMs), was used to develop prediction models to evaluate tomato quality attributes non-destructively. Soluble solid content (SSC), fructose, glucose, titratable acidity (TA), ascorbic, and citric acid contents of different types of fresh tomatoes were analyzed with standard methods, and those values were correlated to spectral data by partial least squares regression (PLSR). Fresh tomato samples were obtained in 2018 and 2019 crops in commercial production, and four fruit types were evaluated: Roma, round, grape, and cherry tomatoes. The large variation in tomato types and having the fruits from distinct years resulted in a wide range in quality parameters enabling robust PLSR models. Results showed accurate prediction and good correlation (Rpred) for SSC = 0.87, glucose = 0.83, fructose = 0.87, ascorbic acid = 0.81, and citric acid = 0.86. Our results support the assertion that a handheld NIR spectrometer has a high potential to simultaneously determine several quality attributes of different types of tomatoes in a practical and fast way.


Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1598
Author(s):  
Chih-Yu Chung ◽  
Yu-Ju Chen ◽  
Chia-Hui Kang ◽  
Hung-Yun Lin ◽  
Chih-Ching Huang ◽  
...  

Carbon quantum dots (CQDs) are emerging novel nanomaterials with a wide range of applications and high biocompatibility. However, there is a lack of in-depth research on whether CQDs can cause acute or long-term adverse reactions in aquatic organisms. In this study, two different types of CQDs prepared by ammonia citrate and spermidine, namely CQDAC and CQDSpd, were used to evaluate their biocompatibilities. In the fish embryo acute toxicity test (FET), the LD50 of CQDAC and CQDSpd was about 500 and 100 ppm. During the stage of eleutheroembryo, the LD50 decreased to 340 and 55 ppm, respectively. However, both CQDs were quickly eliminated from embryo and eleutheroembryo, indicating a lack of bioaccumulation. Long-term accumulation of CQDs was also performed in this study, and adult zebrafish showed no adverse effects in 12 weeks. In addition, there was no difference in the hatchability and deformity rates of offspring produced by adult zebrafish, regardless of whether they were fed CQDs or not. The results showed that both CQDAC and CQDSpd have low toxicity and bioaccumulation to zebrafish. Moreover, the toxicity assay developed in this study provides a comprehensive platform to assess the impacts of CQDs on aquatic organisms in the future.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 513
Author(s):  
Anna Rabajczyk ◽  
Maria Zielecka ◽  
Krzysztof Cygańczuk ◽  
Łukasz Pastuszka ◽  
Leszek Jurecki

A recent trend in the field of membrane research is the incorporation of nanoparticles into polymeric membranes, which could produce synergistic effects when using different types of materials. This paper discusses the effect of the introduction of different nanometals such as silver, iron, silica, aluminum, titanium, zinc, and copper and their oxides on the permeability, selectivity, hydrophilicity, conductivity, mechanical strength, thermal stability, and antiviral and antibacterial properties of polymeric membranes. The effects of nanoparticle physicochemical properties, type, size, and concentration on a membrane’s intrinsic properties such as pore morphology, porosity, pore size, hydrophilicity/hydrophobicity, membrane surface charge, and roughness are discussed, and the performance of nanocomposite membranes in terms of flux permeation, contaminant rejection, and antifouling capability are reviewed. The wide range of nanocomposite membrane applications including desalination and removal of various contaminants in water-treatment processes are discussed.


2021 ◽  
Vol 69 (4) ◽  
Author(s):  
Michael Chandross ◽  
Nicolas Argibay

AbstractThe friction behavior of metals is directly linked to the mechanisms that accommodate deformation. We examine the links between mechanisms of strengthening, deformation, and the wide range of friction behaviors that are exhibited by shearing metal interfaces. Specifically, the focus is on understanding the shear strength of nanocrystalline and nanostructured metals, and conditions that lead to low friction coefficients. Grain boundary sliding and the breakdown of Hall–Petch strengthening at the shearing interface are found to generally and predictably explain the low friction of these materials. While the following is meant to serve as a general discussion of the strength of metals in the context of tribological applications, one important conclusion is that tribological research methods also provide opportunities for probing the fundamental properties and deformation mechanisms of metals.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 822
Author(s):  
Christine Thanner ◽  
Martin Eibelhuber

Ultraviolet (UV) Nanoimprint Lithography (NIL) is a replication method that is well known for its capability to address a wide range of pattern sizes and shapes. It has proven to be an efficient production method for patterning resist layers with features ranging from a few hundred micrometers and down to the nanometer range. Best results can be achieved if the fundamental behavior of the imprint resist and the pattern filling are considered by the equipment and process parameters. In particular, the material properties and pattern size and shape play a crucial role. For capillary force-driven filling behavior it is important to understand the influencing parameters and respective failure modes in order to optimize the processes for reliable full wafer manufacturing. In this work, the nanoimprint results obtained for different pattern geometries are compared with respect to pattern quality and residual layer thickness: The comprehensive overview of the relevant process parameters is helpful for setting up NIL processes for different nanostructures with minimum layer thickness.


Sign in / Sign up

Export Citation Format

Share Document