scholarly journals Syrosingopine sensitizes cancer cells to killing by metformin

2016 ◽  
Vol 2 (12) ◽  
pp. e1601756 ◽  
Author(s):  
Don Benjamin ◽  
Marco Colombi ◽  
Sravanth K. Hindupur ◽  
Charles Betz ◽  
Heidi A. Lane ◽  
...  

We report that the anticancer activity of the widely used diabetic drug metformin is strongly potentiated by syrosingopine. Synthetic lethality elicited by combining the two drugs is synergistic and specific to transformed cells. This effect is unrelated to syrosingopine’s known role as an inhibitor of the vesicular monoamine transporters. Syrosingopine binds to the glycolytic enzyme α-enolase in vitro, and the expression of the γ-enolase isoform correlates with nonresponsiveness to the drug combination. Syrosingopine sensitized cancer cells to metformin and its more potent derivative phenformin far below the individual toxic threshold of each compound. Thus, combining syrosingopine and codrugs is a promising therapeutic strategy for clinical application for the treatment of cancer.

Cancers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 2116
Author(s):  
Xiaoyong Wang ◽  
Lijuan Zhang ◽  
Qi Dai ◽  
Hongzong Si ◽  
Longyun Zhang ◽  
...  

The high concentrations of individual phytochemicals in vitro studies cannot be physiologically achieved in humans. Our solution for this concentration gap between in vitro and human studies is to combine two or more phytochemicals. We screened 12 phytochemicals by pairwise combining two compounds at a low level to select combinations exerting the synergistic inhibitory effect of breast cancer cell proliferation. A novel combination of luteolin at 30 μM (LUT30) and indole-3-carbinol 40 μM (I3C40) identified that this combination (L30I40) synergistically constrains ERα+ breast cancer cell (MCF7 and T47D) proliferation only, but not triple-negative breast cancer cells. At the same time, the individual LUT30 and I3C40 do not have this anti-proliferative effect in ERα+ breast cancer cells. Moreover, this combination L30I40 does not have toxicity on endothelial cells compared to the current commercial drugs. Similarly, the combination of LUT and I3C (LUT10 mg + I3C10 mg/kg/day) (IP injection) synergistically suppresses tumor growth in MCF7 cells-derived xenograft mice, but the individual LUT (10 mg/kg/day) and I3C (20 mg/kg/day) do not show an inhibitory effect. This combination synergistically downregulates two major therapeutic targets ERα and cyclin dependent kinase (CDK) 4/6/retinoblastoma (Rb) pathway, both in cultured cells and xenograft tumors. These results provide a solid foundation that a combination of LUT and I3C may be a practical approach to treat ERα+ breast cancer cells after clinical trials.


Nanomaterials ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 804 ◽  
Author(s):  
Ying-Jie Hu ◽  
Jing-Ying Zhang ◽  
Qian Luo ◽  
Jia-Rui Xu ◽  
Yan Yan ◽  
...  

The heterogeneity of breast cancer and the development of drug resistance are the relapse reasons of disease after chemotherapy. To address this issue, a combined therapeutic strategy was developed by building the nanostructured dihydroartemisinin plus epirubicin liposomes. Investigations were performed on human breast cancer cells in vitro and xenografts in nude mice. The results indicated that dihydroartemisinin could significantly enhance the efficacy of epirubicin in killing different breast cancer cells in vitro and in vivo. We found that the combined use of dihydroartemisinin with epirubicin could efficiently inhibit the activity of Bcl-2, facilitate release of Beclin 1, and further activate Bax. Besides, Bax activated apoptosis which led to the type I programmed death of breast cancer cells while Beclin 1 initiated the excessive autophagy that resulted in the type II programmed death of breast cancer cells. In addition, the nanostructured dihydroartemisinin plus epirubicin liposomes prolonged circulation of drugs, and were beneficial for simultaneously delivering drugs into breast cancer tissues. Hence, the nanostructured dihydroartemisinin plus epirubicin liposomes could provide a new therapeutic strategy for treatment of breast cancer.


2020 ◽  
Author(s):  
Sharon Spizzichino ◽  
Dalila Boi ◽  
Giovanna Boumis ◽  
Roberta Lucchi ◽  
Francesca R. Liberati ◽  
...  

ABSTRACTDe novo thymidylate synthesis is a crucial pathway for normal and cancer cells. Deoxythymidine monophosphate (dTMP) is synthesized by the combined action of three enzymes: thymidylate synthase (TYMS), serine hydroxymethyltransferase (SHMT) and dihydrofolate reductase (DHFR), targets of widely used chemotherapeutics such as antifolates and 5-fluorouracil. These proteins translocate to the nucleus after SUMOylation and are suggested to assemble in this compartment into the thymidylate synthesis complex (dTMP-SC). We report the intracellular dynamics of the complex in lung cancer cells by in situ proximity ligation assay, showing that it is also detected in the cytoplasm. We have successfully assembled the dTMP synthesis complex in vitro, employing tetrameric SHMT1 and a bifunctional chimeric enzyme comprising human TYMS and DHFR. We show that the SHMT1 tetrameric state is required for efficient complex assembly, indicating that this aggregation state is evolutionary selected in eukaryotes to optimize protein-protein interactions. Lastly, our results on the activity of the complete thymidylate cycle in vitro, provide a useful tool to develop drugs targeting the entire complex instead of the individual components.


Biomedicines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1028
Author(s):  
Nikolaos Nikoleousakos ◽  
Panagiotis Dalezis ◽  
Aikaterini Polonifi ◽  
Elena G. Geromichalou ◽  
Sofia Sagredou ◽  
...  

We evaluated three newly synthesized B-lactam hybrid homo-aza-steroidal alkylators (ASA-A, ASA-B and ASA-C) for their PARP1/2 inhibition activity and their DNA damaging effect against human ovarian carcinoma cells. These agents are conjugated with an alkylating component (POPA), which also served as a reference molecule (positive control), and were tested against four human ovarian cell lines in vitro (UWB1.289 + BRCA1, UWB1.289, SKOV-3 and OVCAR-3). The studied compounds were thereafter compared to 3-AB, a known PARP inhibitor, as well as to Olaparib, a standard third-generation PARP inhibitor, on a PARP assay investigating their inhibitory potential. Finally, a PARP1 and PARP2 mRNA expression analysis by qRT-PCR was produced in order to measure the absolute and the relative gene expression (in mRNA transcripts) between treated and untreated cells. All the investigated hybrid steroid alkylators and POPA decreased in vitro cell growth differentially, according to the sensitivity and different gene characteristics of each cell line, while ASA-A and ASA-B presented the most significant anticancer activity. Both these compounds induced PARP1/2 enzyme inhibition, DNA damage (alkylation) and upregulation of PARP mRNA expression, for all tested cell lines. However, ASA-C underperformed on average in the above tasks, while the compound ASA-B induced synthetic lethality effects on the ovarian cancer cells. Nevertheless, the overall outcome, leading to a drug-like potential, provides strong evidence toward further evaluation.


2019 ◽  
Vol 15 (6) ◽  
pp. 1276-1286 ◽  
Author(s):  
Jianfa Li ◽  
ChenChen Huang ◽  
Tiefu Xiong ◽  
Changshui Zhuang ◽  
Chengle Zhuang ◽  
...  

2020 ◽  
Author(s):  
Kang Wang ◽  
Zhengyang Zhang ◽  
Tsai Hsiang-i ◽  
Yanfang Liu ◽  
Ming Wang ◽  
...  

AbstractFerroptosis has been implicated as a tumor-suppressor function for cancer therapy. Recently the sensitivity to ferroptosis was tightly linked to numerous biological processes, including metabolism of amino acid. Here, using a high-throughput CRISPR/Cas9 based genetic screen in HepG2 cells to search for metabolic proteins inhibiting ferroptosis, we identified branched chain amino acid aminotransferase 2 (BCAT2) as a novel suppressor of ferroptosis. Mechanistically, ferroptosis inducers (erastin, sorafenib and sulfasalazine) activated AMPK/SREBP1 signaling pathway through ferritinophagy, which in turn inhibited BCAT2 transcription. We further confirmed that BCAT2 mediating the metabolism of sulfur amino acid, regulated intracellular glutamate level, whose activation by ectopic expression specifically antagonize system Xc– inhibition and protected liver and pancreatic cancer cells from ferroptosis in vitro and in vivo. Finally, our results demonstrate the synergistic effect of sorafenib and sulfasalazine in downregulating BCAT2 expression and dictating ferroptotic death, where BCAT2 can also be used to predict the responsiveness of cancer cells to ferroptosis-inducing therapies. Collectively, these findings identify a novel role of BCAT2 in ferroptosis, suggesting a potential therapeutic strategy for overcoming sorafenib resistance.


Cancers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1345 ◽  
Author(s):  
Chun-Han Chen ◽  
Tsung-Han Hsieh ◽  
Yu-Chen Lin ◽  
Yun-Ru Liu ◽  
Jing-Ping Liou ◽  
...  

Anticancer therapies reportedly promote pro-survival autophagy in cancer cells that confers drug resistance, rationalizing the concept to combine autophagy inhibitors to increase their therapeutic potential. We previously identified that MPT0L145 is a PIK3C3/FGFR inhibitor that not only increases autophagosome formation due to fibroblast growth factor receptor (FGFR) inhibition but also perturbs autophagic flux via PIK3C3 inhibition in bladder cancer cells harboring FGFR activation. In this study, we hypothesized that combined-use of MPT0L145 with agents that induce pro-survival autophagy may provide synthetic lethality in cancer cells without FGFR activation. The results showed that MPT0L145 synergistically sensitizes anticancer effects of gefitinib and gemcitabine in non-small cell lung cancer A549 cells and pancreatic cancer PANC-1 cells, respectively. Mechanistically, drug combination increased incomplete autophagy due to impaired PIK3C3 function by MPT0L145 as evidenced by p62 accumulation and no additional apoptotic cell death was observed. Meanwhile, drug combination perturbed survival pathways and increased vacuolization and ROS production in cancer cells. In conclusion, the data suggest that halting pro-survival autophagy by targeting PIK3C3 with MPT0L145 significantly sensitizes cancer cells to targeted or chemotherapeutic agents, fostering rational combination strategies for cancer therapy in the future.


2009 ◽  
Vol 53 (6) ◽  
pp. 2557-2563 ◽  
Author(s):  
Edgie-Mark A. Co ◽  
Richard A. Dennull ◽  
Drew D. Reinbold ◽  
Norman C. Waters ◽  
Jacob D. Johnson

ABSTRACT Several drug development strategies, including optimization of new antimalarial drug combinations, have been used to counter malaria drug resistance. We evaluated the malaria Sybr green I-based fluorescence (MSF) assay for its use in in vitro drug combination sensitivity assays. Drug combinations of previously published synergistic (atovaquone and proguanil), indifferent (chloroquine and azithromycin), and antagonistic (chloroquine and atovaquone) antimalarial drug interactions were tested against Plasmodium falciparum strains D6 and W2 using the MSF assay. Fifty percent inhibitory concentrations (IC50s) were calculated for individual drugs and in fixed ratio combinations relative to their individual IC50s. Subsequent isobologram analysis and fractional inhibitory concentration determinations demonstrated the expected drug interaction pattern for each combination tested. Furthermore, we explored the ability of the MSF assay to examine mixed parasite population dynamics, which are commonly seen in malaria patient isolates. Specifically, the capacity of the MSF assay to discern between single and mixed parasite populations was determined. To simulate mixed infections in vitro, fixed ratios of D6 and W2 strains were cocultured with antimalarial drugs and IC50s were determined using the MSF assay. Dichotomous concentration curves indicated that the sensitive and resistant parasites composing the genetically heterogeneous population were detectable. Biphasic analysis was performed to obtain subpopulation IC50s for comparison to those obtained for the individual malaria strains alone. In conclusion, the MSF assay allows for reliable antimalarial drug combination screening and provides an important method to discern between homogenous and heterogeneous parasite populations.


2021 ◽  
Vol 22 (24) ◽  
pp. 13324
Author(s):  
Watson P. Folk ◽  
Alpana Kumari ◽  
Tetsushi Iwasaki ◽  
Erica K. Cassimere ◽  
Slovénie Pyndiah ◽  
...  

The pro-apoptotic tumor suppressor BIN1 inhibits the activities of the neoplastic transcription factor MYC, poly (ADP-ribose) polymerase-1 (PARP1), and ATM Ser/Thr kinase (ATM) by separate mechanisms. Although BIN1 deficits increase cancer-cell resistance to DNA-damaging chemotherapeutics, such as cisplatin, it is not fully understood when BIN1 deficiency occurs and how it provokes cisplatin resistance. Here, we report that the coordinated actions of MYC, PARP1, and ATM assist cancer cells in acquiring cisplatin resistance by BIN1 deficits. Forced BIN1 depletion compromised cisplatin sensitivity irrespective of Ser15-phosphorylated, pro-apoptotic TP53 tumor suppressor. The BIN1 deficit facilitated ATM to phosphorylate the DNA-damage-response (DDR) effectors, including MDC1. Consequently, another DDR protein, RNF8, bound to ATM-phosphorylated MDC1 and protected MDC1 from caspase-3-dependent proteolytic cleavage to hinder cisplatin sensitivity. Of note, long-term and repeated exposure to cisplatin naturally recapitulated the BIN1 loss and accompanying RNF8-dependent cisplatin resistance. Simultaneously, endogenous MYC was remarkably activated by PARP1, thereby repressing the BIN1 promoter, whereas PARP inhibition abolished the hyperactivated MYC-dependent BIN1 suppression and restored cisplatin sensitivity. Since the BIN1 gene rarely mutates in human cancers, our results suggest that simultaneous inhibition of PARP1 and ATM provokes a new BRCAness-independent synthetic lethal effect and ultimately re-establishes cisplatin sensitivity even in platinum-refractory cancer cells.


2020 ◽  
Author(s):  
Suyanee Thongchot ◽  
Chiara Vidoni ◽  
Alessandra Ferraresi ◽  
Watcharin Loilome Loilome ◽  
Narong Khuntikeo ◽  
...  

Abstract Background: Interleukin-6 (IL-6) massively released by cancer-associated fibroblast (CAFs) has been shown to associate with the malignant behavior of cholangiocarcinoma (CCA). In vitro studies demonstrated the ability of CAFs-derived IL-6 to inhibit autophagy in CCA cells thus promoting their proliferation and invasiveness potential. Here, we aimed to validate with clinical and molecular data the hypothesis that CAFs infiltration and release of IL-6 predict poor prognosis in CCA patients following dysregulation of autophagy in cancer cells.Methods: Stromal IL-6 and cancer cell-associated autophagy proteins LC3 and p62 were assayed by Tissue MicroArray immunohistochemistry and their expression correlated with overall survival (OS) in a cohort of 70 CCA patients. Additionally, copy number and mRNA expression data of BECN1, MAP1-LC3B, p62/SQSTM1 and IL6 were extracted from a CCA database in TCGA and correlated with OS. 5-FU Cytotoxicity in CCA cells was assessed by cell counting, clonogenic assay, cytofluorometry and western blotting and immunofluorescence of apoptotic-related proteins. Results: We show that patients bearing a CCA with low production of stromal IL-6 and active autophagy flux in the cancer cells have the best prognosis and this correlates with a more effective response to post-operative chemotherapy. Similar trend was observed in CCA patients from TCGA database. In vitro experiments with primary CAFs isolated from human CCA and epigenetic manipulations showed that IL-6 plays a pivotal role in determining the autophagy-associated apoptotic response to chemotherapeutic drug in cultured human CCA cells. Conclusions: Our data support a therapeutic strategy that includes autophagy-enhancing drugs along with adjuvants limiting the stromal inflammation (i.e., the secretion of IL-6) to improve the survival of CCA patients.


Sign in / Sign up

Export Citation Format

Share Document